Main Article Content

Abstract

In present work, Friedal-Craft alkylation of benzene using benzyl alcohol and dibenzyl ether (DBE) has been investigated using Brønsted acidic ionic liquid as a catalyst. It results in 99% conversion of benzyl alcohol, depicting 61% selectivity towards diphenylmethane (DPM) using [CSO3Hmim][La(CF3SO3)4] as a catalyst within 18 h. Using the same catalyst, 62% selectivity towards DPM has been obtained with DBE as benzylating agent within 16 h. Effect of various reaction conditions on the activity and selectivity was investigated using [C3SO3Hmim][La(CF3SO3)4] as a catalyst with DBE as benzylating agent.

Keywords

Green chemistry Acidic ionic liquids Catalysis.

Article Details

How to Cite
Madanrao Dhumal, V., Shingote, S., Rane, V., Bhandare, A., Tayade, K., & Kelkar, A. (2022). Exploration on Clean Synthesis of Diphenylmethane Using Ionic Liquid: A Subtle Catalysis. Asian Journal of Organic & Medicinal Chemistry, 7(2), 226–230. https://doi.org/10.14233/ajomc.2022.AJOMC-P393

References

  1. E. Buncel, B.C. Menon and J.P. Colpa, Spectrophotometric Study of Ion Pairing in Diphenylmethyl Alkali Metals Salts, Can. J. Chem., 57, 999 (1979); https://doi.org/10.1139/v79-165
  2. D. Kim and W. Ahn, Diphenylmethane Synthesis Using Ionic Liquids as Lewis Acid Catalyst, Korean J. Chem. Eng., 20, 39 (2003); https://doi.org/10.1007/BF02697182
  3. D. Yin, C. Li, L. Tao, N. Yu, S. Hu and D. Yin, Synthesis of Diphenyl-methane Derivatives in Lewis Acidic Ionic Liquids, J. Mol. Catal. Chem., 245, 260 (2006); https://doi.org/10.1016/j.molcata.2005.10.010
  4. Y. Izumi, M. Ogawa and K. Urabe, Alkali Metal Salts and Ammonium Salts of Keggin-type Heteropolyacids as Solid Acid Catalysts for Liquid-Phase Friedel-Crafts Reactions, Appl. Catal. A Gen., 132, 127 (1995); https://doi.org/10.1016/0926-860X(95)00167-0
  5. S. Cui, B. Lu, Q. Cai, X. Cai, X. Li, X. Xiao, L. Hou and Y. Han, Highly Selective Synthesis of Diphenylmethane with Acidic Ionic Liquids, Ind. Eng. Chem. Res., 45, 1571 (2006); https://doi.org/10.1021/ie0510268
  6. C.R. Kumar, P.S. Sai Prasad and N. Lingaiah, Aluminium Exchanged Heteropoly Tungstate Supported on Titania Catalysts: The Generation of Lewis Acidity and its Role for Benzylation Reaction, J. Mol. Catal. Chem., 350, 83 (2011); https://doi.org/10.1016/j.molcata.2011.09.011
  7. S. Podder and S. Roy, Efficient and Selective Alkylation of Arenes and Heteroarenes with Benzyl and Allyl Ethers Using a Ir/Sn Bimetallic Catalyst, Tetrahedron, 63, 9146 (2007); https://doi.org/10.1016/j.tet.2007.06.068
  8. R. Srivastava, S. Fujita, S. Okamura and M. Arai, Alkylation of Aromatic Compounds with Multi-Component Lewis acid Catalysts of ZnCl2 and Ionic Liquids with Different Organic Cations, React. Kinet. Catal. Lett., 96, 55 (2009); https://doi.org/10.1007/s11144-009-5422-y
  9. S.F.R. Taylor, J.S and C. Hardacre, Friedel–Crafts Alkylation of Aromatics with Benzyl Alcohol over Gold-Modified Silica, ChemCatChem, 3, 119 (2011); https://doi.org/10.1002/cctc.201000337
  10. V.D. Sarca and K.K. Laali, Facile Benzylation of Aromatics in Ionic Liquid Solvents Promoted by TfOH, Sc(OTf)3 and Yb(OTf)3·xH2O; New Life for a Classic Transformation, Green Chem., 8, 615 (2006); https://doi.org/10.1039/B603176E
  11. G. Kamalakar, K. Komura and Y. Sugi, Appl. Catal. A Gen., 310, 155 (2006); https://doi.org/10.1016/j.apcata.2006.05.031
  12. C.R. Kumar, N. Rambabu, N. Lingaiah, P.S.S. Prasad and A.K. Dalai, Hafnium Salts of Dodeca-tungstophosphoric Acid Catalysts for Liquid Phase Benzylation of Anisole with Dibenzylether, Appl. Catal. A Gen., 471, 1 (2014); https://doi.org/10.1016/j.apcata.2013.11.001
  13. M.H. Al-Hazmi and A.W. Apblett, Benzylation of Benzene Over Sulfated Zirconia Supported in MCM-41 Using a Single Source Precursor, Catal. Sci. Technol., 1, 621 (2011); https://doi.org/10.1039/c1cy00004g
  14. A.C. Cole, J.L. Jensen, I. Ntai, K.L. Tran, K.J. Weaver, D.C. Forbes and J.H. Davis, Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts, J. Am. Chem. Soc., 124, 5962 (2002); https://doi.org/10.1021/ja026290w
  15. E.M. Nolan, J. Jaworski, K.I. Okamoto, Y. Hayashi, M. Sheng and S.J. Lippard, QZ1 and QZ2: Rapid, Reversible Quinoline-Derivatized Fluoresceins for Sensing Biological Zn(II), J. Am. Chem. Soc., 127, 16812 (2005); https://doi.org/10.1021/ja052184t
  16. J.J.F. De Silva and R.J.P. Williams, Biological Chemistry of the Elements, Oxford University Press: New York (1991).
  17. A.D. Beavis and M.F. Powers, On the Regulation of the Mitochondrial Inner Membrane Anion Channel by Magnesium and Protons, J. Biol. Chem., 264, 17148 (1989); https://doi.org/10.1016/S0021-9258(18)71471-3
  18. L. Wang, W. Qin, X. Tang, W. Dou and W. Liu, Development and Applications of Fluorescent Indicators for Mg2+ and Zn2+, J. Phys. Chem. A, 115, 1609 (2011); https://doi.org/10.1021/jp110305k
  19. E. Ochiai, Bioinorganic Chemistry: A Survey, Elsevier/Academic Press: Amsterdam (2008).
  20. M. Berg and Y. Shi, The Galvanization of Biology: A Growing Appreciation for the Roles of Zinc, Science, 271, 1081 (1996); https://doi.org/10.1126/science.271.5252.1081
  21. R.M. Roat-Malone, Metals in Medicine, in Bioinorganic Chemistry: A Short Course, John Wiley & Sons, Inc., Hoboken, NJ, USA (2002).