Main Article Content

Abstract

Six novel pyrazole compounds were synthesized, characterized and its antimicrobial activity was also evaluated. In vitro antibacterial activity against diverse bacterial and fungal strains was tested and the results were compared to the standard drug. The DNA binding properties of calf thymus DNA (ct-DNA) were investigated using electronic absorption and fluorescence spectroscopies. The software performed computer-aided molecular docking experimentations on proteins and (ct-DNA). Synthesized compounds revealed moderate to satisfactory biological activities both experimentally and theoretically.

Keywords

Pyrazole derivatives Biological activities DNA binding Molecular docking.

Article Details

How to Cite
Sandhya, P., Swaran, P., & Harikrishnan, E. (2022). Synthesis, DNA Binding, DFT Calculations and Molecular Docking Studies of Biologically Active N-((3-(4-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)naphthyl Derivatives. Asian Journal of Organic & Medicinal Chemistry, 7(2), 211–220. https://doi.org/10.14233/ajomc.2022.AJOMC-P389

References

  1. A.M. Vijesh, A.M. Isloor, P. Shetty, S. Sundershan and H.K. Fun, New Pyrazole Derivatives containing 1,2,4-triazoles and Benzoxazoles as Potent Antimicrobial and Analgesic Agents, Eur. J. Med. Chem., 62, 410 (2013); https://doi.org/10.1016/j.ejmech.2012.12.057
  2. W. Akhtar, A. Marella, M.M. Alam, M.F. Khan, M. Akhtar, T. Anwer, F. Khan, M. Naematullah, F. Azam, M.A. Rizvi and M. Shaquiquzzaman, Design and Synthesis of Pyrazole–Pyrazoline Hybrids as Cancer-Associated Selective COX-2 Inhibitors, Arch. Pharm., 354, 2000116 (2021); https://doi.org/10.1002/ardp.202000116
  3. M.D. Carrión, L.C. López Cara, M.E. Camacho, V. Tapias, G. Escames, D. Acuña-Castroviejo, A. Espinosa, M.A. Gallo and A. Entrena, Pyrazoles and Pyrazolines as Neural and Inducible Nitric Oxide Synthase (nNOS and iNOS) Potential Inhibitors (III), Eur. J. Med. Chem., 43, 2579 (2008); https://doi.org/10.1016/j.ejmech.2008.01.014
  4. N. Gökhan-Kelekçi, S. Koyunoglu, S. Yabanoglu, K. Yelekçi, Ö. Özgen, G. Uçar, K. Erol, E. Kendi and A. Yesilada, New Pyrazoline Bearing 4(3H)-Quinazolinone Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation and Structural Determinants of MAO-A and MAO-B Selectivity, Bioorg. Med. Chem., 17, 675 (2009); https://doi.org/10.1016/j.bmc.2008.11.068
  5. J.V. Faria, P.F. Vegi, A.G.C. Miguita, M.S. dos Santos, N. Boechat and A.M.R. Bernardino, Recently Reported Biological Activities of Pyrazole Compounds, Bioorg. Med. Chem., 25, 5891 (2017); https://doi.org/10.1016/j.bmc.2017.09.035
  6. M. Abid, A.R. Bhat, F. Athar and A. Azam, Synthesis, Spectral Studies and Antiamoebic Activity of New 1-N-Substituted Thiocarbamoyl-3-phenyl-2-pyrazolines, Eur. J. Med. Chem., 44, 417 (2009); https://doi.org/10.1016/j.ejmech.2007.10.032
  7. A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Synthesis of New N-Phenylpyrazole Derivatives with Potent Antimicrobial Activity, Bioorg. Med. Chem., 16, 4569 (2008); https://doi.org/10.1016/j.bmc.2008.02.043
  8. S.R. Shih, T.-Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M. Wu, J.-Y. Yeh, Y.-S. Chao, J.T.A. Hsu, H.-P. Hsieh and J.-T. Horng, Pyrazole Compound BPR1P0034 with Potent and Selective Anti-Influenza Virus Activity, J. Biomed. Sci., 17, 13 (2010); https://doi.org/10.1186/1423-0127-17-13
  9. H. Naito, S. Ohsuki, M. Sugimori, R. Atsumi, M. Minami, Y. Nakamura, M. Ishii, K. Hirotani, E. Kumazawa and A. Ejima, Synthesis and Antitumor Activity of Novel Pyrimidinyl Pyrazole Derivatives. II. Optimization of the Phenylpiperazine Moiety of 1-[5-Methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes, Chem. Pharm. Bull. (Tokyo), 50, 453 (2002); https://doi.org/10.1248/cpb.50.453
  10. M. Abdel-Aziz, G.E.D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
  11. A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Regioselective Synthesis and Antitumor Screening of Some Novel N-phenylpyrazole Derivatives, Bioorg. Med. Chem., 16, 881 (2008); https://doi.org/10.1016/j.bmc.2007.10.015
  12. K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y. Mabkhot, F. Al-aizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
  13. Kavya, R. Upadhya, S. Laxmi and R. Venkateswaran, Effect of Intravenous Dexmedetomidine Administered as Bolus or as Bolus-Plus-Infusion on Subarachnoid Anesthesia with Hyperbaric Bupivacaine, J. Anaesthesiol. Clin. Pharmacol., 34, 46 (2018); https://doi.org/10.4103/joacp.JOACP_132_16
  14. V. Michon, C.H. du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage and L. Berthon, Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-aminopyrazole N-Benzoyl Derivatives, Eur. J. Med. Chem., 30, 147 (1995); https://doi.org/10.1016/0223-5234(96)88220-1
  15. M. Assali, M. Abualhasan, H. Sawaftah, M. Hawash and A. Mousa, Synthesis, Biological Activity, and Molecular Modeling Studies of Pyrazole and Triazole Derivatives as Selective COX-2 Inhibitors, J. Chem., 2020, 6393428 (2020); https://doi.org/10.1155/2020/6393428
  16. N.K. Terrett, A.S. Bell, D. Brown and P. Ellis, Sildenafil (VIAGRATM), A Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X
  17. K.R.A. Abdellatif, M.T. Elsaady, N.H. Amin and A.A. Hefny, Design, Synthesis and Biological Evaluation of Some Novel Indole Derivatives as Selective COX-2 Inhibitors, J. Appl. Pharm. Sci., 7, 069 (2017); https://doi.org/10.7324/JAPS.2017.70810
  18. J.E. Ancel, L. El Kaïm, A. Gadras, L. Grimaud and N.K. Jana, Studies Towards the Synthesis of Fipronil® Analogues: Improved Decarboxylation of a-hydrazonoacid Derivatives, Tetrahedron Lett., 43, 8319 (2002); https://doi.org/10.1016/S0040-4039(02)01977-9
  19. M.J. Alam, O. Alam, P. Alam and M.J. Naim, A Review on Pyrazole Chemical Entity and Biological Activity, Int. J. Pharm. Sci. Res., 6, 1433 (2015).
  20. M. Maaloum, P. Muller and S. Harlepp, DNA-Intercalator Interactions: Structural and Physical Analysis using Atomic Force Microscopy in Solution, Soft Matter, 9, 11233 (2013); https://doi.org/10.1039/c3sm52082j
  21. A. Rescifina, C. Zagni, M.G. Varrica, V. Pistarà and A. Corsaro, Recent Advances in Small Organic Molecules as DNA Intercalating Agents: Synthesis, Activity and Modeling, Eur. J. Med. Chem., 74, 95 (2014); https://doi.org/10.1016/j.ejmech.2013.11.029
  22. H.E.D. Aboul-Anean, Using Quinoa Protein and Starch Nanoparticles to Produce Edible Natural Films, J. Nutr. Heal. Food Eng., 8, 297 (2018); https://doi.org/10.15406/jnhfe.2018.08.00286
  23. A. Balbi, M. Anzaldi, M. Mazzei, M. Miele, M. Bertolotto, L. Ottonello and F. Dallegri, Synthesis and Biological Evaluation of Novel Heterocyclic Ionone-like Derivatives as Anti-inflammatory Agents, Bioorg. Med. Chem., 14, 5152 (2006); https://doi.org/10.1016/j.bmc.2006.04.007
  24. A. Pai, D.V. Kumar and B.S. Jayashree, Synthesis, Characterization, Antibacterial and Anticancer Evaluation of Some Novel Flavone-3-ols, Asian J. Pharm. Sci., 11, 187 (2016); https://doi.org/10.1016/j.ajps.2015.11.044
  25. N.C. Desai, A. Dodiya and N. Shihory, Synthesis and Antimicrobial Activity of Novel Quinazolinone–Thiazolidine–Quinoline Compounds, J. Saudi Chem. Soc., 17, 259 (2013); https://doi.org/10.1016/j.jscs.2011.04.001
  26. M. Baginski, F. Fogolari and J.M. Briggs, Electrostatic and Non-electrostatic Contributions to the Binding Free Energies of Anthracycline Antibiotics to DNA, J. Mol. Biol., 274, 253 (1997); https://doi.org/10.1006/jmbi.1997.1399
  27. S. Instruments, Instrumentation for Fluorescence Spectroscopy 2.1, pp. 27-61, Ed. 3 (2000).
  28. A.S. Khalil and J.J. Collins, Synthetic Biology: Applications Come of Age, Nat. Rev. Genet., 11, 367 (2010); https://doi.org/10.1038/nrg2775
  29. S. Mert, R. Kasimogullari and S. Ok, A Short Review on Pyrazole Derivatives and their Applications, J. Postdr. Res., 2, 64 (2014).
  30. D. Ravi, S. Sarkar, S. Purvey, F. Passero, A. Beheshti, Y. Chen, M. Mokhtar, K. David, T. Konry and A.M. Evens, Interaction Kinetics with Transcriptomic and Secretory Responses of CD19-CAR Natural Killer-Cell Therapy in CD20 Resistant Non-Hodgkin Lymphoma, Leukemia, 34, 1291 (2020); https://doi.org/10.1038/s41375-019-0663-x
  31. S.F. Baranovsky, P.A. Bolotin, M.P. Evstigneev and D.N. Chernyshev, Interaction of Ethidium Bromide and Caffeine With DNA in Aqueous Solution, J. Appl. Spectrosc., 76, 132 (2009); https://doi.org/10.1007/s10812-009-9139-5
  32. E.A. Lafayette, S. Vitalino de Almeida, M. da Rocha Pitta, E. Carneiro Beltrão, T. Gonçalves da Silva, R. Olímpio de Moura, I. da Rocha Pitta, L. de Carvalho and M. do Carmo Alves de Lima, Molecules, 18, 15035 (2013); https://doi.org/10.3390/molecules181215035
  33. S.M.V. De Almeida, E. Lafayette, L. da Silva, C. Amorim, T. de Oliveira, A. Ruiz, J. de Carvalho, R. de Moura, E. Beltrão, M. de Lima and L. Júnior, Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives, Int. J. Mol. Sci., 16, 13023 (2015); https://doi.org/10.3390/ijms160613023
  34. A. Chilin, G. Marzaro, C. Marzano, L.D. Via, M.G. Ferlin, G. Pastorini and A. Guiotto, Synthesis and Antitumor Activity of Novel Amsacrine Analogs: The Critical Role of the Acridine Moiety in Determining their Biological Activity, Bioorg. Med. Chem., 17, 523 (2009); https://doi.org/10.1016/j.bmc.2008.11.072
  35. A.K. Das, H. Ihmels and S. Kölsch, Diphenylaminostyryl-Substituted Quinolizinium Derivatives as Fluorescent Light-up Probes for Duplex And Quadruplex DNA, Photochem. Photobiol. Sci., 18, 1373 (2019); https://doi.org/10.1039/C9PP00096H
  36. J. Kah, C. Yong and Z. Xu, New Developments in Gold Nanomaterials Research, Nova Science Publishers Inc. U.K., Ed. 1 (2016).
  37. I. Sultan, S. Rahman, A.T. Jan, M.T. Siddiqui, A.H. Mondal and Q.M.R. Haq, Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective, Front. Microbiol., 9, 2066 (2018); https://doi.org/10.3389/fmicb.2018.02066
  38. S. Tomassi, J. Lategahn, J. Engel, M. Keul, H.L. Tumbrink, J. Ketzer, T. Mühlenberg, M. Baumann, C. Schultz-Fademrecht, S. Bauer and D. Rauh, Indazole-Based Covalent Inhibitors to Target Drug-Resistant Epidermal Growth Factor Receptor, J. Med. Chem., 60, 2361 (2017); https://doi.org/10.1021/acs.jmedchem.6b01626
  39. R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Molecular Flexibility in ab initio Drug Docking to DNA: Binding-Site and Binding-Mode Transitions in All-Atom Monte Carlo Simulations, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008