Main Article Content
Abstract
Six novel pyrazole compounds were synthesized, characterized and its antimicrobial activity was also evaluated. In vitro antibacterial activity against diverse bacterial and fungal strains was tested and the results were compared to the standard drug. The DNA binding properties of calf thymus DNA (ct-DNA) were investigated using electronic absorption and fluorescence spectroscopies. The software performed computer-aided molecular docking experimentations on proteins and (ct-DNA). Synthesized compounds revealed moderate to satisfactory biological activities both experimentally and theoretically.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- A.M. Vijesh, A.M. Isloor, P. Shetty, S. Sundershan and H.K. Fun, New Pyrazole Derivatives containing 1,2,4-triazoles and Benzoxazoles as Potent Antimicrobial and Analgesic Agents, Eur. J. Med. Chem., 62, 410 (2013); https://doi.org/10.1016/j.ejmech.2012.12.057
- W. Akhtar, A. Marella, M.M. Alam, M.F. Khan, M. Akhtar, T. Anwer, F. Khan, M. Naematullah, F. Azam, M.A. Rizvi and M. Shaquiquzzaman, Design and Synthesis of Pyrazole–Pyrazoline Hybrids as Cancer-Associated Selective COX-2 Inhibitors, Arch. Pharm., 354, 2000116 (2021); https://doi.org/10.1002/ardp.202000116
- M.D. Carrión, L.C. López Cara, M.E. Camacho, V. Tapias, G. Escames, D. Acuña-Castroviejo, A. Espinosa, M.A. Gallo and A. Entrena, Pyrazoles and Pyrazolines as Neural and Inducible Nitric Oxide Synthase (nNOS and iNOS) Potential Inhibitors (III), Eur. J. Med. Chem., 43, 2579 (2008); https://doi.org/10.1016/j.ejmech.2008.01.014
- N. Gökhan-Kelekçi, S. Koyunoglu, S. Yabanoglu, K. Yelekçi, Ö. Özgen, G. Uçar, K. Erol, E. Kendi and A. Yesilada, New Pyrazoline Bearing 4(3H)-Quinazolinone Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation and Structural Determinants of MAO-A and MAO-B Selectivity, Bioorg. Med. Chem., 17, 675 (2009); https://doi.org/10.1016/j.bmc.2008.11.068
- J.V. Faria, P.F. Vegi, A.G.C. Miguita, M.S. dos Santos, N. Boechat and A.M.R. Bernardino, Recently Reported Biological Activities of Pyrazole Compounds, Bioorg. Med. Chem., 25, 5891 (2017); https://doi.org/10.1016/j.bmc.2017.09.035
- M. Abid, A.R. Bhat, F. Athar and A. Azam, Synthesis, Spectral Studies and Antiamoebic Activity of New 1-N-Substituted Thiocarbamoyl-3-phenyl-2-pyrazolines, Eur. J. Med. Chem., 44, 417 (2009); https://doi.org/10.1016/j.ejmech.2007.10.032
- A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Synthesis of New N-Phenylpyrazole Derivatives with Potent Antimicrobial Activity, Bioorg. Med. Chem., 16, 4569 (2008); https://doi.org/10.1016/j.bmc.2008.02.043
- S.R. Shih, T.-Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M. Wu, J.-Y. Yeh, Y.-S. Chao, J.T.A. Hsu, H.-P. Hsieh and J.-T. Horng, Pyrazole Compound BPR1P0034 with Potent and Selective Anti-Influenza Virus Activity, J. Biomed. Sci., 17, 13 (2010); https://doi.org/10.1186/1423-0127-17-13
- H. Naito, S. Ohsuki, M. Sugimori, R. Atsumi, M. Minami, Y. Nakamura, M. Ishii, K. Hirotani, E. Kumazawa and A. Ejima, Synthesis and Antitumor Activity of Novel Pyrimidinyl Pyrazole Derivatives. II. Optimization of the Phenylpiperazine Moiety of 1-[5-Methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes, Chem. Pharm. Bull. (Tokyo), 50, 453 (2002); https://doi.org/10.1248/cpb.50.453
- M. Abdel-Aziz, G.E.D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
- A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Regioselective Synthesis and Antitumor Screening of Some Novel N-phenylpyrazole Derivatives, Bioorg. Med. Chem., 16, 881 (2008); https://doi.org/10.1016/j.bmc.2007.10.015
- K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y. Mabkhot, F. Al-aizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
- Kavya, R. Upadhya, S. Laxmi and R. Venkateswaran, Effect of Intravenous Dexmedetomidine Administered as Bolus or as Bolus-Plus-Infusion on Subarachnoid Anesthesia with Hyperbaric Bupivacaine, J. Anaesthesiol. Clin. Pharmacol., 34, 46 (2018); https://doi.org/10.4103/joacp.JOACP_132_16
- V. Michon, C.H. du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage and L. Berthon, Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-aminopyrazole N-Benzoyl Derivatives, Eur. J. Med. Chem., 30, 147 (1995); https://doi.org/10.1016/0223-5234(96)88220-1
- M. Assali, M. Abualhasan, H. Sawaftah, M. Hawash and A. Mousa, Synthesis, Biological Activity, and Molecular Modeling Studies of Pyrazole and Triazole Derivatives as Selective COX-2 Inhibitors, J. Chem., 2020, 6393428 (2020); https://doi.org/10.1155/2020/6393428
- N.K. Terrett, A.S. Bell, D. Brown and P. Ellis, Sildenafil (VIAGRATM), A Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X
- K.R.A. Abdellatif, M.T. Elsaady, N.H. Amin and A.A. Hefny, Design, Synthesis and Biological Evaluation of Some Novel Indole Derivatives as Selective COX-2 Inhibitors, J. Appl. Pharm. Sci., 7, 069 (2017); https://doi.org/10.7324/JAPS.2017.70810
- J.E. Ancel, L. El Kaïm, A. Gadras, L. Grimaud and N.K. Jana, Studies Towards the Synthesis of Fipronil® Analogues: Improved Decarboxylation of a-hydrazonoacid Derivatives, Tetrahedron Lett., 43, 8319 (2002); https://doi.org/10.1016/S0040-4039(02)01977-9
- M.J. Alam, O. Alam, P. Alam and M.J. Naim, A Review on Pyrazole Chemical Entity and Biological Activity, Int. J. Pharm. Sci. Res., 6, 1433 (2015).
- M. Maaloum, P. Muller and S. Harlepp, DNA-Intercalator Interactions: Structural and Physical Analysis using Atomic Force Microscopy in Solution, Soft Matter, 9, 11233 (2013); https://doi.org/10.1039/c3sm52082j
- A. Rescifina, C. Zagni, M.G. Varrica, V. Pistarà and A. Corsaro, Recent Advances in Small Organic Molecules as DNA Intercalating Agents: Synthesis, Activity and Modeling, Eur. J. Med. Chem., 74, 95 (2014); https://doi.org/10.1016/j.ejmech.2013.11.029
- H.E.D. Aboul-Anean, Using Quinoa Protein and Starch Nanoparticles to Produce Edible Natural Films, J. Nutr. Heal. Food Eng., 8, 297 (2018); https://doi.org/10.15406/jnhfe.2018.08.00286
- A. Balbi, M. Anzaldi, M. Mazzei, M. Miele, M. Bertolotto, L. Ottonello and F. Dallegri, Synthesis and Biological Evaluation of Novel Heterocyclic Ionone-like Derivatives as Anti-inflammatory Agents, Bioorg. Med. Chem., 14, 5152 (2006); https://doi.org/10.1016/j.bmc.2006.04.007
- A. Pai, D.V. Kumar and B.S. Jayashree, Synthesis, Characterization, Antibacterial and Anticancer Evaluation of Some Novel Flavone-3-ols, Asian J. Pharm. Sci., 11, 187 (2016); https://doi.org/10.1016/j.ajps.2015.11.044
- N.C. Desai, A. Dodiya and N. Shihory, Synthesis and Antimicrobial Activity of Novel Quinazolinone–Thiazolidine–Quinoline Compounds, J. Saudi Chem. Soc., 17, 259 (2013); https://doi.org/10.1016/j.jscs.2011.04.001
- M. Baginski, F. Fogolari and J.M. Briggs, Electrostatic and Non-electrostatic Contributions to the Binding Free Energies of Anthracycline Antibiotics to DNA, J. Mol. Biol., 274, 253 (1997); https://doi.org/10.1006/jmbi.1997.1399
- S. Instruments, Instrumentation for Fluorescence Spectroscopy 2.1, pp. 27-61, Ed. 3 (2000).
- A.S. Khalil and J.J. Collins, Synthetic Biology: Applications Come of Age, Nat. Rev. Genet., 11, 367 (2010); https://doi.org/10.1038/nrg2775
- S. Mert, R. Kasimogullari and S. Ok, A Short Review on Pyrazole Derivatives and their Applications, J. Postdr. Res., 2, 64 (2014).
- D. Ravi, S. Sarkar, S. Purvey, F. Passero, A. Beheshti, Y. Chen, M. Mokhtar, K. David, T. Konry and A.M. Evens, Interaction Kinetics with Transcriptomic and Secretory Responses of CD19-CAR Natural Killer-Cell Therapy in CD20 Resistant Non-Hodgkin Lymphoma, Leukemia, 34, 1291 (2020); https://doi.org/10.1038/s41375-019-0663-x
- S.F. Baranovsky, P.A. Bolotin, M.P. Evstigneev and D.N. Chernyshev, Interaction of Ethidium Bromide and Caffeine With DNA in Aqueous Solution, J. Appl. Spectrosc., 76, 132 (2009); https://doi.org/10.1007/s10812-009-9139-5
- E.A. Lafayette, S. Vitalino de Almeida, M. da Rocha Pitta, E. Carneiro Beltrão, T. Gonçalves da Silva, R. Olímpio de Moura, I. da Rocha Pitta, L. de Carvalho and M. do Carmo Alves de Lima, Molecules, 18, 15035 (2013); https://doi.org/10.3390/molecules181215035
- S.M.V. De Almeida, E. Lafayette, L. da Silva, C. Amorim, T. de Oliveira, A. Ruiz, J. de Carvalho, R. de Moura, E. Beltrão, M. de Lima and L. Júnior, Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives, Int. J. Mol. Sci., 16, 13023 (2015); https://doi.org/10.3390/ijms160613023
- A. Chilin, G. Marzaro, C. Marzano, L.D. Via, M.G. Ferlin, G. Pastorini and A. Guiotto, Synthesis and Antitumor Activity of Novel Amsacrine Analogs: The Critical Role of the Acridine Moiety in Determining their Biological Activity, Bioorg. Med. Chem., 17, 523 (2009); https://doi.org/10.1016/j.bmc.2008.11.072
- A.K. Das, H. Ihmels and S. Kölsch, Diphenylaminostyryl-Substituted Quinolizinium Derivatives as Fluorescent Light-up Probes for Duplex And Quadruplex DNA, Photochem. Photobiol. Sci., 18, 1373 (2019); https://doi.org/10.1039/C9PP00096H
- J. Kah, C. Yong and Z. Xu, New Developments in Gold Nanomaterials Research, Nova Science Publishers Inc. U.K., Ed. 1 (2016).
- I. Sultan, S. Rahman, A.T. Jan, M.T. Siddiqui, A.H. Mondal and Q.M.R. Haq, Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective, Front. Microbiol., 9, 2066 (2018); https://doi.org/10.3389/fmicb.2018.02066
- S. Tomassi, J. Lategahn, J. Engel, M. Keul, H.L. Tumbrink, J. Ketzer, T. Mühlenberg, M. Baumann, C. Schultz-Fademrecht, S. Bauer and D. Rauh, Indazole-Based Covalent Inhibitors to Target Drug-Resistant Epidermal Growth Factor Receptor, J. Med. Chem., 60, 2361 (2017); https://doi.org/10.1021/acs.jmedchem.6b01626
- R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Molecular Flexibility in ab initio Drug Docking to DNA: Binding-Site and Binding-Mode Transitions in All-Atom Monte Carlo Simulations, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008
References
A.M. Vijesh, A.M. Isloor, P. Shetty, S. Sundershan and H.K. Fun, New Pyrazole Derivatives containing 1,2,4-triazoles and Benzoxazoles as Potent Antimicrobial and Analgesic Agents, Eur. J. Med. Chem., 62, 410 (2013); https://doi.org/10.1016/j.ejmech.2012.12.057
W. Akhtar, A. Marella, M.M. Alam, M.F. Khan, M. Akhtar, T. Anwer, F. Khan, M. Naematullah, F. Azam, M.A. Rizvi and M. Shaquiquzzaman, Design and Synthesis of Pyrazole–Pyrazoline Hybrids as Cancer-Associated Selective COX-2 Inhibitors, Arch. Pharm., 354, 2000116 (2021); https://doi.org/10.1002/ardp.202000116
M.D. Carrión, L.C. López Cara, M.E. Camacho, V. Tapias, G. Escames, D. Acuña-Castroviejo, A. Espinosa, M.A. Gallo and A. Entrena, Pyrazoles and Pyrazolines as Neural and Inducible Nitric Oxide Synthase (nNOS and iNOS) Potential Inhibitors (III), Eur. J. Med. Chem., 43, 2579 (2008); https://doi.org/10.1016/j.ejmech.2008.01.014
N. Gökhan-Kelekçi, S. Koyunoglu, S. Yabanoglu, K. Yelekçi, Ö. Özgen, G. Uçar, K. Erol, E. Kendi and A. Yesilada, New Pyrazoline Bearing 4(3H)-Quinazolinone Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation and Structural Determinants of MAO-A and MAO-B Selectivity, Bioorg. Med. Chem., 17, 675 (2009); https://doi.org/10.1016/j.bmc.2008.11.068
J.V. Faria, P.F. Vegi, A.G.C. Miguita, M.S. dos Santos, N. Boechat and A.M.R. Bernardino, Recently Reported Biological Activities of Pyrazole Compounds, Bioorg. Med. Chem., 25, 5891 (2017); https://doi.org/10.1016/j.bmc.2017.09.035
M. Abid, A.R. Bhat, F. Athar and A. Azam, Synthesis, Spectral Studies and Antiamoebic Activity of New 1-N-Substituted Thiocarbamoyl-3-phenyl-2-pyrazolines, Eur. J. Med. Chem., 44, 417 (2009); https://doi.org/10.1016/j.ejmech.2007.10.032
A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Synthesis of New N-Phenylpyrazole Derivatives with Potent Antimicrobial Activity, Bioorg. Med. Chem., 16, 4569 (2008); https://doi.org/10.1016/j.bmc.2008.02.043
S.R. Shih, T.-Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M. Wu, J.-Y. Yeh, Y.-S. Chao, J.T.A. Hsu, H.-P. Hsieh and J.-T. Horng, Pyrazole Compound BPR1P0034 with Potent and Selective Anti-Influenza Virus Activity, J. Biomed. Sci., 17, 13 (2010); https://doi.org/10.1186/1423-0127-17-13
H. Naito, S. Ohsuki, M. Sugimori, R. Atsumi, M. Minami, Y. Nakamura, M. Ishii, K. Hirotani, E. Kumazawa and A. Ejima, Synthesis and Antitumor Activity of Novel Pyrimidinyl Pyrazole Derivatives. II. Optimization of the Phenylpiperazine Moiety of 1-[5-Methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes, Chem. Pharm. Bull. (Tokyo), 50, 453 (2002); https://doi.org/10.1248/cpb.50.453
M. Abdel-Aziz, G.E.D.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Regioselective Synthesis and Antitumor Screening of Some Novel N-phenylpyrazole Derivatives, Bioorg. Med. Chem., 16, 881 (2008); https://doi.org/10.1016/j.bmc.2007.10.015
K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y. Mabkhot, F. Al-aizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
Kavya, R. Upadhya, S. Laxmi and R. Venkateswaran, Effect of Intravenous Dexmedetomidine Administered as Bolus or as Bolus-Plus-Infusion on Subarachnoid Anesthesia with Hyperbaric Bupivacaine, J. Anaesthesiol. Clin. Pharmacol., 34, 46 (2018); https://doi.org/10.4103/joacp.JOACP_132_16
V. Michon, C.H. du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage and L. Berthon, Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-aminopyrazole N-Benzoyl Derivatives, Eur. J. Med. Chem., 30, 147 (1995); https://doi.org/10.1016/0223-5234(96)88220-1
M. Assali, M. Abualhasan, H. Sawaftah, M. Hawash and A. Mousa, Synthesis, Biological Activity, and Molecular Modeling Studies of Pyrazole and Triazole Derivatives as Selective COX-2 Inhibitors, J. Chem., 2020, 6393428 (2020); https://doi.org/10.1155/2020/6393428
N.K. Terrett, A.S. Bell, D. Brown and P. Ellis, Sildenafil (VIAGRATM), A Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X
K.R.A. Abdellatif, M.T. Elsaady, N.H. Amin and A.A. Hefny, Design, Synthesis and Biological Evaluation of Some Novel Indole Derivatives as Selective COX-2 Inhibitors, J. Appl. Pharm. Sci., 7, 069 (2017); https://doi.org/10.7324/JAPS.2017.70810
J.E. Ancel, L. El Kaïm, A. Gadras, L. Grimaud and N.K. Jana, Studies Towards the Synthesis of Fipronil® Analogues: Improved Decarboxylation of a-hydrazonoacid Derivatives, Tetrahedron Lett., 43, 8319 (2002); https://doi.org/10.1016/S0040-4039(02)01977-9
M.J. Alam, O. Alam, P. Alam and M.J. Naim, A Review on Pyrazole Chemical Entity and Biological Activity, Int. J. Pharm. Sci. Res., 6, 1433 (2015).
M. Maaloum, P. Muller and S. Harlepp, DNA-Intercalator Interactions: Structural and Physical Analysis using Atomic Force Microscopy in Solution, Soft Matter, 9, 11233 (2013); https://doi.org/10.1039/c3sm52082j
A. Rescifina, C. Zagni, M.G. Varrica, V. Pistarà and A. Corsaro, Recent Advances in Small Organic Molecules as DNA Intercalating Agents: Synthesis, Activity and Modeling, Eur. J. Med. Chem., 74, 95 (2014); https://doi.org/10.1016/j.ejmech.2013.11.029
H.E.D. Aboul-Anean, Using Quinoa Protein and Starch Nanoparticles to Produce Edible Natural Films, J. Nutr. Heal. Food Eng., 8, 297 (2018); https://doi.org/10.15406/jnhfe.2018.08.00286
A. Balbi, M. Anzaldi, M. Mazzei, M. Miele, M. Bertolotto, L. Ottonello and F. Dallegri, Synthesis and Biological Evaluation of Novel Heterocyclic Ionone-like Derivatives as Anti-inflammatory Agents, Bioorg. Med. Chem., 14, 5152 (2006); https://doi.org/10.1016/j.bmc.2006.04.007
A. Pai, D.V. Kumar and B.S. Jayashree, Synthesis, Characterization, Antibacterial and Anticancer Evaluation of Some Novel Flavone-3-ols, Asian J. Pharm. Sci., 11, 187 (2016); https://doi.org/10.1016/j.ajps.2015.11.044
N.C. Desai, A. Dodiya and N. Shihory, Synthesis and Antimicrobial Activity of Novel Quinazolinone–Thiazolidine–Quinoline Compounds, J. Saudi Chem. Soc., 17, 259 (2013); https://doi.org/10.1016/j.jscs.2011.04.001
M. Baginski, F. Fogolari and J.M. Briggs, Electrostatic and Non-electrostatic Contributions to the Binding Free Energies of Anthracycline Antibiotics to DNA, J. Mol. Biol., 274, 253 (1997); https://doi.org/10.1006/jmbi.1997.1399
S. Instruments, Instrumentation for Fluorescence Spectroscopy 2.1, pp. 27-61, Ed. 3 (2000).
A.S. Khalil and J.J. Collins, Synthetic Biology: Applications Come of Age, Nat. Rev. Genet., 11, 367 (2010); https://doi.org/10.1038/nrg2775
S. Mert, R. Kasimogullari and S. Ok, A Short Review on Pyrazole Derivatives and their Applications, J. Postdr. Res., 2, 64 (2014).
D. Ravi, S. Sarkar, S. Purvey, F. Passero, A. Beheshti, Y. Chen, M. Mokhtar, K. David, T. Konry and A.M. Evens, Interaction Kinetics with Transcriptomic and Secretory Responses of CD19-CAR Natural Killer-Cell Therapy in CD20 Resistant Non-Hodgkin Lymphoma, Leukemia, 34, 1291 (2020); https://doi.org/10.1038/s41375-019-0663-x
S.F. Baranovsky, P.A. Bolotin, M.P. Evstigneev and D.N. Chernyshev, Interaction of Ethidium Bromide and Caffeine With DNA in Aqueous Solution, J. Appl. Spectrosc., 76, 132 (2009); https://doi.org/10.1007/s10812-009-9139-5
E.A. Lafayette, S. Vitalino de Almeida, M. da Rocha Pitta, E. Carneiro Beltrão, T. Gonçalves da Silva, R. Olímpio de Moura, I. da Rocha Pitta, L. de Carvalho and M. do Carmo Alves de Lima, Molecules, 18, 15035 (2013); https://doi.org/10.3390/molecules181215035
S.M.V. De Almeida, E. Lafayette, L. da Silva, C. Amorim, T. de Oliveira, A. Ruiz, J. de Carvalho, R. de Moura, E. Beltrão, M. de Lima and L. Júnior, Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives, Int. J. Mol. Sci., 16, 13023 (2015); https://doi.org/10.3390/ijms160613023
A. Chilin, G. Marzaro, C. Marzano, L.D. Via, M.G. Ferlin, G. Pastorini and A. Guiotto, Synthesis and Antitumor Activity of Novel Amsacrine Analogs: The Critical Role of the Acridine Moiety in Determining their Biological Activity, Bioorg. Med. Chem., 17, 523 (2009); https://doi.org/10.1016/j.bmc.2008.11.072
A.K. Das, H. Ihmels and S. Kölsch, Diphenylaminostyryl-Substituted Quinolizinium Derivatives as Fluorescent Light-up Probes for Duplex And Quadruplex DNA, Photochem. Photobiol. Sci., 18, 1373 (2019); https://doi.org/10.1039/C9PP00096H
J. Kah, C. Yong and Z. Xu, New Developments in Gold Nanomaterials Research, Nova Science Publishers Inc. U.K., Ed. 1 (2016).
I. Sultan, S. Rahman, A.T. Jan, M.T. Siddiqui, A.H. Mondal and Q.M.R. Haq, Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective, Front. Microbiol., 9, 2066 (2018); https://doi.org/10.3389/fmicb.2018.02066
S. Tomassi, J. Lategahn, J. Engel, M. Keul, H.L. Tumbrink, J. Ketzer, T. Mühlenberg, M. Baumann, C. Schultz-Fademrecht, S. Bauer and D. Rauh, Indazole-Based Covalent Inhibitors to Target Drug-Resistant Epidermal Growth Factor Receptor, J. Med. Chem., 60, 2361 (2017); https://doi.org/10.1021/acs.jmedchem.6b01626
R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Molecular Flexibility in ab initio Drug Docking to DNA: Binding-Site and Binding-Mode Transitions in All-Atom Monte Carlo Simulations, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008