Main Article Content
Abstract
In a large number of biologically active natural products and pharmaceuticals, the important substructures are sulfur containing heterocycles. Thioethers and other sulphur-rich molecules commonly occur in chemical biology, organic synthesis and material chemistry. In case of the formation of carbon-heteroatom bonds, copper catalyzed cross-coupling reactions provide a powerful tool as its cost is low and here the readily accessible and stable ligands are used. It has been recognized that copper catalyzed C–S coupling reactions are an efficacious strategy for synthesizing sulfur-rich heterocyclic compounds and so the strategy has gained worldwide attention. This review sums up recent research developments in the field of synthesis of sulfur-containing heterocycles using copper-catalyst.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction, Chem. Rev., 102, 1359 (2002); https://doi.org/10.1021/cr000664r
- J.P. Corbet and G. Mignani, Selected Patented Cross-Coupling Reaction Technologies, Chem. Rev., 106, 2651 (2006); https://doi.org/10.1021/cr0505268
- D. Alberico, M.E. Scott and M. Lautens, Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation, Chem. Rev., 107, 174 (2007); https://doi.org/10.1021/cr0509760
- C. Liu, H. Zhang, W. Shi and A.W. Lei, Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions, Chem. Rev., 111, 1780 (2011); https://doi.org/10.1021/cr100379j
- J. Choi and G.C. Fu, Transition Metal–Catalyzed Alkyl-Alkyl bond Formation: Another Dimension in Cross-Coupling Chemistry, Science, 356, 152 (2017); https://doi.org/10.1126/science.aaf7230
- J.F. Hartwig, Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism, Angew. Chem. Int. Ed., 37, 2047 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046:: AID-ANIE2046>3.0.CO;2-L
- P. Wolfe, S. Wagaw, J.F.O. Marcoux and S.L. Buchwald, Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation, Acc. Chem. Res., 31, 805 (1998); https://doi.org/10.1021/ar9600650
- J.F. Hartwig, Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers and Sulfides, Acc. Chem. Res., 31, 852 (1998); https://doi.org/10.1021/ar970282g
- B. Schlummer and U. Scholz, Palladium-Catalyzed C-N and C-O Coupling–A Practical Guide from an Industrial Vantage Point, Adv. Syn. Cat., 346, 1599 (2004); https://doi.org/10.1002/adsc.200404216
- J.F. Hartwig, Carbon–Heteroatom Bond Formation Catalysed by Organometallic Complexes, Nature, 455, 314 (2008); https://doi.org/10.1038/nature07369
- S.H. Cho, J.Y. Kim, J. Kwak and S. Chang, Recent Advances in the Transition Metal-catalyzed Two-fold Oxidative C–H Bond Activation Strategy For C–C And C–N Bond Formation, Chem. Soc. Rev., 40, 5068 (2011); https://doi.org/10.1039/c1cs15082k
- G. Evano, N. Blanchard and M. Toumi, Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis, Chem. Rev., 108, 3054 (2008); https://doi.org/10.1021/cr8002505
- G. Evano, M. Toumi and A. Coste, Copper-Catalyzed Cyclization Reactions for the Synthesis of Alkaloids, Chem. Commun., 4166 (2009); https://doi.org/10.1039/b905601g
- F. Monnier and M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-Type Coupling Reactions: Copper Makes a Difference, Angew. Chem. Int. Ed., 47, 3096 (2008); https://doi.org/10.1002/anie.200703209
- M. Carril, R. SanMartin and E. Dominguez, Palladium and Copper-Catalysed Arylation Reactions in the Presence of Water, with a Focus on Carbon–Heteroatom Bond Formation, Chem. Soc. Rev., 37, 639 (2008); https://doi.org/10.1039/b709565c
- I.P. Beletskaya and A.V. Cheprakov, Copper in Cross-Coupling Reactions: The Post-Ullmann Chemistry, Coord. Chem. Rev., 248, 2337 (2004); https://doi.org/10.1016/j.ccr.2004.09.014
- S.V. Ley and A.W. Thomas, Modern Synthetic Methods for Copper-Mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S Bond Formation, Angew. Chem. Int. Ed., 42, 5400 (2003); https://doi.org/10.1002/anie.200300594
- K. Kunz, U. Scholz and D. Ganzer, Renaissance of Ullmann and Goldberg Reactions-Progress in Copper Catalyzed C-N-, C-O- and C-S-Coupling, Synlett, 2428 (2003); https://doi.org/10.1055/s-2003-42473
- S. Tekale, V. Jadhav, V. Pagore, S. Kauthale, D. Gaikwad and R. Pawar, Application Progress of Recent Advances in Some Copper Catalyzed Coupling Reactions, Mini Rev. Org. Chem., 10, 281 (2013); https://doi.org/10.2174/1570193X11310030007
- A. Sujatha, A.M. Thomas, A.P. Thankachan and G. Anilkumar, Recent advances in Copper-Catalyzed C-S Cross-coupling Reactions, ARKIVOC, 2015, 1 (2015); https://doi.org/10.3998/ark.5550190.p008.779
- Y. Liu and J.-P. Wan, Tandem Reactions Initiated by Copper-Catalyzed Cross-Coupling: A New Strategy Towards Heterocycle Synthesis, Org. Biomol. Chem., 9, 6873 (2011); https://doi.org/10.1039/c1ob05769c
- J. Nakayama, Eds.: A.R. Katritzky, C.W. Rees and E.F.V. Scriven, Eds. Comprehensive Heterocyclic Chemistry II, Oxford, p. 607 (1996).
- H.Y. Meltzer and H.C. Fibiger, Olanzapine: A New Atypical Antipsychotic Drug, Neuropsychopharmacology, 14, 83 (1996); https://doi.org/10.1016/0893-133X(95)00197-L
- X. Li, D. Conklin, H.-L. Pan and J.C. Eisenach, Allosteric Adenosine Receptor Modulation Reduces Hypersensitivity Following Peripheral Inflammation by a Central Mechanism, J. Pharmacol. Exp. Ther., 305, 950 (2003); https://doi.org/10.1124/jpet.102.047951
- S. Gronowitz and A.B. Hornfeldt, Thiophenes, Elsevier, U.K., Ed.: 1 (2004).
- S. Lethu, M. Ginisty, D. Bosc and J. Dubois, Discovery of a New Class of Protein Farnesyltransferase Inhibitors in the Arylthiophene Series, J. Med. Chem., 52, 6205 (2009); https://doi.org/10.1021/jm901280q
- L. Aurelio, C. Valant, B.L. Flynn, P.M. Sexton, A. Christopoulos and P.J. Scammells, Allosteric Modulators of the Adenosine A1 Receptor: Synthesis and Pharmacological Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes, J. Med. Chem., 52, 4543 (2009); https://doi.org/10.1021/jm9002582
- Q. Huang, P.F. Richardson, N.W. Sach, J. Zhu, K.K.-C. Liu, G.L. Smith and D.M. Bowles, Development of Scalable Syntheses of Selective PI3K inhibitors, Org. Process Res. Dev., 15, 556 (2011); https://doi.org/10.1021/op100286g
- R.M. Mohareb, A.E.M. Abdallah and M.A. Abdelaziz, New Approaches for the Synthesis of Pyrazole, Thiophene, Thieno[2,3-b]-pyridine and Thiazole Derivatives Together with their Anti-Tumor Evaluations, Med. Chem. Res., 23, 564 (2014); https://doi.org/10.1007/s00044-013-0664-7
- R. Sun, Y. Du, C. Tian, L. Li, H. Wang and Y.-L. Zhao, Copper(II)-Catalyzed Domino Reaction of the Acyclic Ketene-(S,S)-Acetals with Diazo Compounds: Convenient Synthesis of Poly-Substituted Thiophenes, Adv. Synth. Catal., 361, 5684 (2019); https://doi.org/10.1002/adsc.201901089
- J. Xiong, G. Zhong and Y. Liu, Domino Reactions Initiated by Copper-Catalyzed Aryl-I Bond Thiolation for the Switchable Synthesis of 2,3-Dihydrobenzothiazinones and Benzoisothiazolones, Adv. Synth. Catal., 361, 550 (2019); https://doi.org/10.1002/adsc.201801221
- Z.-H. Yang, H.-R. Tan, Y.-L. An, Y.-W. Zhao, H.-P. Lin and S.-Y. Zhao, Three-Component Coupling Reactions of Maleimides, Thiols, and Amines: One-Step Construction of 3,4-Heteroatom-Functionalized Maleimides by Copper-Catalyzed C(sp2)-H Thioamination, Adv. Synth. Catal., 360, 173 (2018); https://doi.org/10.1002/adsc.201700955
- Z. Gan, Q. Yan, G. Li, Q. Li, X. Dou, G.-Y. Li and D. Yang, Copper-Catalyzed Domino Synthesis of Sulfur-Containing Heterocycles Using Carbon Disulfide as a Building Block, Adv. Synth. Catal., 361, 4558 (2019); https://doi.org/10.1002/adsc.201900643
- I. Caleta, M. Kralj, M. Marjanovic, B. Bertoša, S. Tomic, G. Pavlovic, K. Pavelic and G. Karminski-Zamola, Novel Cyano- and Amidino-benzothiazole Derivatives: Synthesis, Antitumor Evaluation, and X-ray and Quantitative Structure-Activity Relationship (QSAR) Analysis, J. Med. Chem., 52, 1744 (2009); https://doi.org/10.1021/jm801566q
- H. Suter and H. Zutter, Studien über Benzthiazole als eventuelle orale Antidiabetica, Helv. Chim. Acta, 50, 1084 (1967); https://doi.org/10.1002/hlca.19670500415
- S.J. Hays, M.J. Rice, D.F. Ortwine, G. Johnson, R.D. Schwarz, D.K. Boyd, L.F. Copeland, M.G. Vartanian and P.A. Boxer, Substituted 2-Benzothiazolamines as Sodium Flux Inhibitors: Quantitative Structure-Activity Relationships and Anticonvulsant Activity, J. Pharm. Sci., 83, 1425 (1994); https://doi.org/10.1002/jps.2600831013
- K. Inamoto, C. Hasegawa, K. Hiroya and T. Doi, Palladium-Catalyzed Synthesis of 2-Substituted Benzothiazoles via a C-H Functionalization/Intramolecular C-S Bond Formation Process, Org. Lett., 10, 5147 (2008); https://doi.org/10.1021/ol802033p
- L.L. Joyce, G. Evindar and R.A. Batey, Copper- and Palladium-Catalyzed Intramolecular C–S Bond Formation: A Convenient Synthesis of 2-aminobenzothiazoles, Chem. Commun., 446 (2004); https://doi.org/10.1039/B311591G
- D. Ma, S. Xie, P. Xue, X. Zhang, J. Dong and Y. Jiang, Efficient and Economical Access to Substituted Benzothiazoles: Copper-Catalyzed Coupling of 2-Haloanilides with Metal Sulfides and Subsequent Condensation, Angew. Chem. Int. Ed., 48, 4222 (2009); https://doi.org/10.1002/anie.200900486
- Q. Ding, X. He and J. Wu, Synthesis of 2-Aminobenzothiazole via Copper(I)-Catalyzed Tandem Reaction of 2-Iodobenzenamine with Isothiocyanate, J. Comb. Chem., 11, 587 (2009); https://doi.org/10.1021/cc900027c
- G. Shen, X. Lv and W. Bao, Synthesis of N -Substituted-2-Amino-benzothiazoles by Ligand-Free Copper(I)-Catalyzed Cross-Coupling Reaction of 2-Haloanilines with Isothiocyanates, Eur. J. Org. Chem., 2009, 5897 (2009); https://doi.org/10.1002/ejoc.200900953
- R. Yao, H. Liu, Y. Wu and M. Cai, Ligand- and Solvent-Free Synthesis of 2-aminobenzothiazoles by Copper-catalyzed Tandem Reaction of 2-Haloanilines with Isothiocyanates, Appl. Organomet. Chem., 27, 109 (2013); https://doi.org/10.1002/aoc.2949
- C. Xie and Y. Zhang, A Copper-Catalyzed Domino Reaction of Alkynyl Bromides and Oxazolidine-2-thiones: Synthesis of Thiazol-2-ones, Asian J. Org. Chem., 7, 888 (2018); https://doi.org/10.1002/ajoc.201800154
- P. Guglielmi, D. Secci, A. Petzer, D. Bagetta, P. Chimenti, G. Rotondi, C. Ferrante, L. Recinella, S. Leone, S. Alcaro, G. Zengin, J.P. Petzer, F. Ortuso and S. Carradori, Benzo[b]tiophen-3-ol Derivatives as Effective Inhibitors of Human Monoamine Oxidase: Design, Synthesis and Biological Activity, J. Enzyme Inhib. Med. Chem., 34, 1511 (2019); https://doi.org/10.1080/14756366.2019.1653864
- M.R. Bleavins, F.A. de la Iglesia and J.A. McCay Jr., Immunotoxicologic Studies with CI-959, A Novel Benzothiophene Cell Activation Inhibitor, Toxicology, 98, 111 (1995); https://doi.org/10.1016/0300-483X(94)02985-4
- A. Gerwien, T. Reinhardt, P. Mayer and H. Dube, Synthesis of Double-Bond-Substituted Hemithioindigo Photoswitches, Org. Lett., 20, 232 (2018); https://doi.org/10.1021/acs.orglett.7b03574
- N. Sundaravelu, T. Singha, A. Nandy and G. Sekar, Copper-Catalyzed Domino Synthesis of Multi-substituted Benzo[b]thiophene through Radical Cyclization Using Xanthate as a Sulfur Surrogate, Chem. Commun., 57, 4512 (2021); https://doi.org/10.1039/D0CC08429H
- S. Murru, H. Ghosh, S.K. Sahoo and B.K. Patel, Intra- and Inter-molecular C-S Bond Formation Using a Single Catalytic System: First Direct Access to Arylthiobenzothiazoles, Org. Lett., 11, 4254 (2009); https://doi.org/10.1021/ol9017535
- C.J. Paget, K. Kisner, R.L. Stone and D.C. DeLong, Heterocyclic Substituted Ureas. II. Immunosuppressive and Antiviral Activity of Benzothiazolyl- and Benzoxazolylureas, J. Med. Chem., 12, 1016 (1969); https://doi.org/10.1021/jm00306a011
- P. Lours, Def. Veg., 24, 91 (1970).
- R.C. Young, R. C. Mitchell, T.H. Brown, C.R. Ganellin, R. Griffiths, M. Jones, K.K. Rana, D. Saunders, I.R. Smith, N.E. Sore, T.J. Wilks, Development of a New Physicochemical Model for Brain Penetration and its Application to the Design of Centrally acting H2 Receptor Histamine Antagonists, J. Med. Chem., 31, 656 (1988); https://doi.org/10.1021/jm00398a028
- F. Parlati, U.V. Ramesh, P.R. Singh, G. Donald, R. Lowe, G.C. Look, Benzothiazoles and Thiazolo[5,4-b]pyridines as Ubiquitin Ligase Inhibitors, their Preparation and Pharmaceutical Compositions, PCT Int. Appl. WO 2005037845 (2005).
- M. Yoshida, I. Hayakawa, N. Hayashi, T. Agatsuma, F. Tanzawa, Y. Oda, S. Iwasaki, K. Koyama, H. Furukawa, S. Kurakata and Y. Sugano, Synthesis and Biological Evaluation of Benzothiazole Derivatives as Potent Antitumor Agents, Bioorg. Med. Chem. Lett., 15, 3328 (2005); https://doi.org/10.1016/j.bmcl.2005.05.077
- A.S. Kalgutkar, I. Gardner, R.S. Obach, C.L. Shaffer, E. Callegari, K.R. Henne, A.E. Mutlib, D.K. Dalvie, J.S. Lee, Y. Nakai, J.P. O’Donnell, J. Boer and S.P. Harriman, A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups, Curr. Drug Metab., 6, 161 (2005); https://doi.org/10.2174/1389200054021799
- W. Hao, J. Huang, S. Jie and M. Cai, A Highly Efficient Copper(I)-Catalyzed Cascade Reaction of o-Alkenylphenyl Isothiocyanates with Isocyanides Leading to 5H-Benzo[d ]imidazo[5,1-b ][1,3]thiazines, Eur. J. Org. Chem., 6655 (2015); https://doi.org/10.1002/ejoc.201500800
- F. Wang, C. Chen, G. Deng and C. Xi, Concise Approach to Benzisothiazol-3(2H)-one via Copper-Catalyzed Tandem Reaction of o-Bromobenzamide and Potassium Thiocyanate in Water, J. Org. Chem., 77, 4148 (2012); https://doi.org/10.1021/jo300250x
- H.-H. Xu, X.-H. Zhang and X.-G. Zhang, Copper-Catalyzed Tandem Sulfuration/Annulation of Propargylamines with Sulfur via C–N Bond Cleavage, J. Org. Chem., 84, 7894 (2019); https://doi.org/10.1021/acs.joc.9b00685
- S.M. Soria-Castro, F.R. Bisogno and A.B. Peñéñory, Versatile One-pot Synthesis of Benzo-Fused Thiacycles by Copper Catalysis, Org. Chem. Front., 4, 1533 (2017); https://doi.org/10.1039/C6QO00776G
- X. Zhang, W. Zeng, Y. Yang, H. Huang and Y. Liang, Copper-Catalyzed Double C–S Bonds Formation via Different Paths: Synthesis of Benzothiazoles from N-Benzyl-2-iodoaniline and Potassium Sulfide, Org. Lett., 16, 876 (2014); https://doi.org/10.1021/ol403638d
- S. Sangeetha, P. Muthupandi and G. Sekar, Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C–S Bond Formations Using Xanthate as Sulfur Source, Org. Lett., 17, 6006 (2015); https://doi.org/10.1021/acs.orglett.5b02977
- M.-Q. Huang, T.-J. Li, J.-Q. Liu, A. Shatskiy, M.D. Kärkäs and X.-S. Wang, Switchable Copper-Catalyzed Approach to Benzodithiole, Benzothia-selenole and Dibenzodithiocine Skeletons, Org. Lett., 22, 3454 (2020); https://doi.org/10.1021/acs.orglett.0c00907
- H.-Y. Kim, S.H. Kwak, G.-H. Lee and Y.-D. Gong, Copper-Catalyzed Synthesis of 3-Substituted-5-amino-1,2,4-thiadiazoles via Intramolecular N–S Bond Formation, Tetrahedron, 70, 8737 (2014); https://doi.org/10.1016/j.tet.2014.09.023
References
J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction, Chem. Rev., 102, 1359 (2002); https://doi.org/10.1021/cr000664r
J.P. Corbet and G. Mignani, Selected Patented Cross-Coupling Reaction Technologies, Chem. Rev., 106, 2651 (2006); https://doi.org/10.1021/cr0505268
D. Alberico, M.E. Scott and M. Lautens, Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation, Chem. Rev., 107, 174 (2007); https://doi.org/10.1021/cr0509760
C. Liu, H. Zhang, W. Shi and A.W. Lei, Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions, Chem. Rev., 111, 1780 (2011); https://doi.org/10.1021/cr100379j
J. Choi and G.C. Fu, Transition Metal–Catalyzed Alkyl-Alkyl bond Formation: Another Dimension in Cross-Coupling Chemistry, Science, 356, 152 (2017); https://doi.org/10.1126/science.aaf7230
J.F. Hartwig, Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism, Angew. Chem. Int. Ed., 37, 2047 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046:: AID-ANIE2046>3.0.CO;2-L
P. Wolfe, S. Wagaw, J.F.O. Marcoux and S.L. Buchwald, Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation, Acc. Chem. Res., 31, 805 (1998); https://doi.org/10.1021/ar9600650
J.F. Hartwig, Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers and Sulfides, Acc. Chem. Res., 31, 852 (1998); https://doi.org/10.1021/ar970282g
B. Schlummer and U. Scholz, Palladium-Catalyzed C-N and C-O Coupling–A Practical Guide from an Industrial Vantage Point, Adv. Syn. Cat., 346, 1599 (2004); https://doi.org/10.1002/adsc.200404216
J.F. Hartwig, Carbon–Heteroatom Bond Formation Catalysed by Organometallic Complexes, Nature, 455, 314 (2008); https://doi.org/10.1038/nature07369
S.H. Cho, J.Y. Kim, J. Kwak and S. Chang, Recent Advances in the Transition Metal-catalyzed Two-fold Oxidative C–H Bond Activation Strategy For C–C And C–N Bond Formation, Chem. Soc. Rev., 40, 5068 (2011); https://doi.org/10.1039/c1cs15082k
G. Evano, N. Blanchard and M. Toumi, Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis, Chem. Rev., 108, 3054 (2008); https://doi.org/10.1021/cr8002505
G. Evano, M. Toumi and A. Coste, Copper-Catalyzed Cyclization Reactions for the Synthesis of Alkaloids, Chem. Commun., 4166 (2009); https://doi.org/10.1039/b905601g
F. Monnier and M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-Type Coupling Reactions: Copper Makes a Difference, Angew. Chem. Int. Ed., 47, 3096 (2008); https://doi.org/10.1002/anie.200703209
M. Carril, R. SanMartin and E. Dominguez, Palladium and Copper-Catalysed Arylation Reactions in the Presence of Water, with a Focus on Carbon–Heteroatom Bond Formation, Chem. Soc. Rev., 37, 639 (2008); https://doi.org/10.1039/b709565c
I.P. Beletskaya and A.V. Cheprakov, Copper in Cross-Coupling Reactions: The Post-Ullmann Chemistry, Coord. Chem. Rev., 248, 2337 (2004); https://doi.org/10.1016/j.ccr.2004.09.014
S.V. Ley and A.W. Thomas, Modern Synthetic Methods for Copper-Mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S Bond Formation, Angew. Chem. Int. Ed., 42, 5400 (2003); https://doi.org/10.1002/anie.200300594
K. Kunz, U. Scholz and D. Ganzer, Renaissance of Ullmann and Goldberg Reactions-Progress in Copper Catalyzed C-N-, C-O- and C-S-Coupling, Synlett, 2428 (2003); https://doi.org/10.1055/s-2003-42473
S. Tekale, V. Jadhav, V. Pagore, S. Kauthale, D. Gaikwad and R. Pawar, Application Progress of Recent Advances in Some Copper Catalyzed Coupling Reactions, Mini Rev. Org. Chem., 10, 281 (2013); https://doi.org/10.2174/1570193X11310030007
A. Sujatha, A.M. Thomas, A.P. Thankachan and G. Anilkumar, Recent advances in Copper-Catalyzed C-S Cross-coupling Reactions, ARKIVOC, 2015, 1 (2015); https://doi.org/10.3998/ark.5550190.p008.779
Y. Liu and J.-P. Wan, Tandem Reactions Initiated by Copper-Catalyzed Cross-Coupling: A New Strategy Towards Heterocycle Synthesis, Org. Biomol. Chem., 9, 6873 (2011); https://doi.org/10.1039/c1ob05769c
J. Nakayama, Eds.: A.R. Katritzky, C.W. Rees and E.F.V. Scriven, Eds. Comprehensive Heterocyclic Chemistry II, Oxford, p. 607 (1996).
H.Y. Meltzer and H.C. Fibiger, Olanzapine: A New Atypical Antipsychotic Drug, Neuropsychopharmacology, 14, 83 (1996); https://doi.org/10.1016/0893-133X(95)00197-L
X. Li, D. Conklin, H.-L. Pan and J.C. Eisenach, Allosteric Adenosine Receptor Modulation Reduces Hypersensitivity Following Peripheral Inflammation by a Central Mechanism, J. Pharmacol. Exp. Ther., 305, 950 (2003); https://doi.org/10.1124/jpet.102.047951
S. Gronowitz and A.B. Hornfeldt, Thiophenes, Elsevier, U.K., Ed.: 1 (2004).
S. Lethu, M. Ginisty, D. Bosc and J. Dubois, Discovery of a New Class of Protein Farnesyltransferase Inhibitors in the Arylthiophene Series, J. Med. Chem., 52, 6205 (2009); https://doi.org/10.1021/jm901280q
L. Aurelio, C. Valant, B.L. Flynn, P.M. Sexton, A. Christopoulos and P.J. Scammells, Allosteric Modulators of the Adenosine A1 Receptor: Synthesis and Pharmacological Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes, J. Med. Chem., 52, 4543 (2009); https://doi.org/10.1021/jm9002582
Q. Huang, P.F. Richardson, N.W. Sach, J. Zhu, K.K.-C. Liu, G.L. Smith and D.M. Bowles, Development of Scalable Syntheses of Selective PI3K inhibitors, Org. Process Res. Dev., 15, 556 (2011); https://doi.org/10.1021/op100286g
R.M. Mohareb, A.E.M. Abdallah and M.A. Abdelaziz, New Approaches for the Synthesis of Pyrazole, Thiophene, Thieno[2,3-b]-pyridine and Thiazole Derivatives Together with their Anti-Tumor Evaluations, Med. Chem. Res., 23, 564 (2014); https://doi.org/10.1007/s00044-013-0664-7
R. Sun, Y. Du, C. Tian, L. Li, H. Wang and Y.-L. Zhao, Copper(II)-Catalyzed Domino Reaction of the Acyclic Ketene-(S,S)-Acetals with Diazo Compounds: Convenient Synthesis of Poly-Substituted Thiophenes, Adv. Synth. Catal., 361, 5684 (2019); https://doi.org/10.1002/adsc.201901089
J. Xiong, G. Zhong and Y. Liu, Domino Reactions Initiated by Copper-Catalyzed Aryl-I Bond Thiolation for the Switchable Synthesis of 2,3-Dihydrobenzothiazinones and Benzoisothiazolones, Adv. Synth. Catal., 361, 550 (2019); https://doi.org/10.1002/adsc.201801221
Z.-H. Yang, H.-R. Tan, Y.-L. An, Y.-W. Zhao, H.-P. Lin and S.-Y. Zhao, Three-Component Coupling Reactions of Maleimides, Thiols, and Amines: One-Step Construction of 3,4-Heteroatom-Functionalized Maleimides by Copper-Catalyzed C(sp2)-H Thioamination, Adv. Synth. Catal., 360, 173 (2018); https://doi.org/10.1002/adsc.201700955
Z. Gan, Q. Yan, G. Li, Q. Li, X. Dou, G.-Y. Li and D. Yang, Copper-Catalyzed Domino Synthesis of Sulfur-Containing Heterocycles Using Carbon Disulfide as a Building Block, Adv. Synth. Catal., 361, 4558 (2019); https://doi.org/10.1002/adsc.201900643
I. Caleta, M. Kralj, M. Marjanovic, B. Bertoša, S. Tomic, G. Pavlovic, K. Pavelic and G. Karminski-Zamola, Novel Cyano- and Amidino-benzothiazole Derivatives: Synthesis, Antitumor Evaluation, and X-ray and Quantitative Structure-Activity Relationship (QSAR) Analysis, J. Med. Chem., 52, 1744 (2009); https://doi.org/10.1021/jm801566q
H. Suter and H. Zutter, Studien über Benzthiazole als eventuelle orale Antidiabetica, Helv. Chim. Acta, 50, 1084 (1967); https://doi.org/10.1002/hlca.19670500415
S.J. Hays, M.J. Rice, D.F. Ortwine, G. Johnson, R.D. Schwarz, D.K. Boyd, L.F. Copeland, M.G. Vartanian and P.A. Boxer, Substituted 2-Benzothiazolamines as Sodium Flux Inhibitors: Quantitative Structure-Activity Relationships and Anticonvulsant Activity, J. Pharm. Sci., 83, 1425 (1994); https://doi.org/10.1002/jps.2600831013
K. Inamoto, C. Hasegawa, K. Hiroya and T. Doi, Palladium-Catalyzed Synthesis of 2-Substituted Benzothiazoles via a C-H Functionalization/Intramolecular C-S Bond Formation Process, Org. Lett., 10, 5147 (2008); https://doi.org/10.1021/ol802033p
L.L. Joyce, G. Evindar and R.A. Batey, Copper- and Palladium-Catalyzed Intramolecular C–S Bond Formation: A Convenient Synthesis of 2-aminobenzothiazoles, Chem. Commun., 446 (2004); https://doi.org/10.1039/B311591G
D. Ma, S. Xie, P. Xue, X. Zhang, J. Dong and Y. Jiang, Efficient and Economical Access to Substituted Benzothiazoles: Copper-Catalyzed Coupling of 2-Haloanilides with Metal Sulfides and Subsequent Condensation, Angew. Chem. Int. Ed., 48, 4222 (2009); https://doi.org/10.1002/anie.200900486
Q. Ding, X. He and J. Wu, Synthesis of 2-Aminobenzothiazole via Copper(I)-Catalyzed Tandem Reaction of 2-Iodobenzenamine with Isothiocyanate, J. Comb. Chem., 11, 587 (2009); https://doi.org/10.1021/cc900027c
G. Shen, X. Lv and W. Bao, Synthesis of N -Substituted-2-Amino-benzothiazoles by Ligand-Free Copper(I)-Catalyzed Cross-Coupling Reaction of 2-Haloanilines with Isothiocyanates, Eur. J. Org. Chem., 2009, 5897 (2009); https://doi.org/10.1002/ejoc.200900953
R. Yao, H. Liu, Y. Wu and M. Cai, Ligand- and Solvent-Free Synthesis of 2-aminobenzothiazoles by Copper-catalyzed Tandem Reaction of 2-Haloanilines with Isothiocyanates, Appl. Organomet. Chem., 27, 109 (2013); https://doi.org/10.1002/aoc.2949
C. Xie and Y. Zhang, A Copper-Catalyzed Domino Reaction of Alkynyl Bromides and Oxazolidine-2-thiones: Synthesis of Thiazol-2-ones, Asian J. Org. Chem., 7, 888 (2018); https://doi.org/10.1002/ajoc.201800154
P. Guglielmi, D. Secci, A. Petzer, D. Bagetta, P. Chimenti, G. Rotondi, C. Ferrante, L. Recinella, S. Leone, S. Alcaro, G. Zengin, J.P. Petzer, F. Ortuso and S. Carradori, Benzo[b]tiophen-3-ol Derivatives as Effective Inhibitors of Human Monoamine Oxidase: Design, Synthesis and Biological Activity, J. Enzyme Inhib. Med. Chem., 34, 1511 (2019); https://doi.org/10.1080/14756366.2019.1653864
M.R. Bleavins, F.A. de la Iglesia and J.A. McCay Jr., Immunotoxicologic Studies with CI-959, A Novel Benzothiophene Cell Activation Inhibitor, Toxicology, 98, 111 (1995); https://doi.org/10.1016/0300-483X(94)02985-4
A. Gerwien, T. Reinhardt, P. Mayer and H. Dube, Synthesis of Double-Bond-Substituted Hemithioindigo Photoswitches, Org. Lett., 20, 232 (2018); https://doi.org/10.1021/acs.orglett.7b03574
N. Sundaravelu, T. Singha, A. Nandy and G. Sekar, Copper-Catalyzed Domino Synthesis of Multi-substituted Benzo[b]thiophene through Radical Cyclization Using Xanthate as a Sulfur Surrogate, Chem. Commun., 57, 4512 (2021); https://doi.org/10.1039/D0CC08429H
S. Murru, H. Ghosh, S.K. Sahoo and B.K. Patel, Intra- and Inter-molecular C-S Bond Formation Using a Single Catalytic System: First Direct Access to Arylthiobenzothiazoles, Org. Lett., 11, 4254 (2009); https://doi.org/10.1021/ol9017535
C.J. Paget, K. Kisner, R.L. Stone and D.C. DeLong, Heterocyclic Substituted Ureas. II. Immunosuppressive and Antiviral Activity of Benzothiazolyl- and Benzoxazolylureas, J. Med. Chem., 12, 1016 (1969); https://doi.org/10.1021/jm00306a011
P. Lours, Def. Veg., 24, 91 (1970).
R.C. Young, R. C. Mitchell, T.H. Brown, C.R. Ganellin, R. Griffiths, M. Jones, K.K. Rana, D. Saunders, I.R. Smith, N.E. Sore, T.J. Wilks, Development of a New Physicochemical Model for Brain Penetration and its Application to the Design of Centrally acting H2 Receptor Histamine Antagonists, J. Med. Chem., 31, 656 (1988); https://doi.org/10.1021/jm00398a028
F. Parlati, U.V. Ramesh, P.R. Singh, G. Donald, R. Lowe, G.C. Look, Benzothiazoles and Thiazolo[5,4-b]pyridines as Ubiquitin Ligase Inhibitors, their Preparation and Pharmaceutical Compositions, PCT Int. Appl. WO 2005037845 (2005).
M. Yoshida, I. Hayakawa, N. Hayashi, T. Agatsuma, F. Tanzawa, Y. Oda, S. Iwasaki, K. Koyama, H. Furukawa, S. Kurakata and Y. Sugano, Synthesis and Biological Evaluation of Benzothiazole Derivatives as Potent Antitumor Agents, Bioorg. Med. Chem. Lett., 15, 3328 (2005); https://doi.org/10.1016/j.bmcl.2005.05.077
A.S. Kalgutkar, I. Gardner, R.S. Obach, C.L. Shaffer, E. Callegari, K.R. Henne, A.E. Mutlib, D.K. Dalvie, J.S. Lee, Y. Nakai, J.P. O’Donnell, J. Boer and S.P. Harriman, A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups, Curr. Drug Metab., 6, 161 (2005); https://doi.org/10.2174/1389200054021799
W. Hao, J. Huang, S. Jie and M. Cai, A Highly Efficient Copper(I)-Catalyzed Cascade Reaction of o-Alkenylphenyl Isothiocyanates with Isocyanides Leading to 5H-Benzo[d ]imidazo[5,1-b ][1,3]thiazines, Eur. J. Org. Chem., 6655 (2015); https://doi.org/10.1002/ejoc.201500800
F. Wang, C. Chen, G. Deng and C. Xi, Concise Approach to Benzisothiazol-3(2H)-one via Copper-Catalyzed Tandem Reaction of o-Bromobenzamide and Potassium Thiocyanate in Water, J. Org. Chem., 77, 4148 (2012); https://doi.org/10.1021/jo300250x
H.-H. Xu, X.-H. Zhang and X.-G. Zhang, Copper-Catalyzed Tandem Sulfuration/Annulation of Propargylamines with Sulfur via C–N Bond Cleavage, J. Org. Chem., 84, 7894 (2019); https://doi.org/10.1021/acs.joc.9b00685
S.M. Soria-Castro, F.R. Bisogno and A.B. Peñéñory, Versatile One-pot Synthesis of Benzo-Fused Thiacycles by Copper Catalysis, Org. Chem. Front., 4, 1533 (2017); https://doi.org/10.1039/C6QO00776G
X. Zhang, W. Zeng, Y. Yang, H. Huang and Y. Liang, Copper-Catalyzed Double C–S Bonds Formation via Different Paths: Synthesis of Benzothiazoles from N-Benzyl-2-iodoaniline and Potassium Sulfide, Org. Lett., 16, 876 (2014); https://doi.org/10.1021/ol403638d
S. Sangeetha, P. Muthupandi and G. Sekar, Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C–S Bond Formations Using Xanthate as Sulfur Source, Org. Lett., 17, 6006 (2015); https://doi.org/10.1021/acs.orglett.5b02977
M.-Q. Huang, T.-J. Li, J.-Q. Liu, A. Shatskiy, M.D. Kärkäs and X.-S. Wang, Switchable Copper-Catalyzed Approach to Benzodithiole, Benzothia-selenole and Dibenzodithiocine Skeletons, Org. Lett., 22, 3454 (2020); https://doi.org/10.1021/acs.orglett.0c00907
H.-Y. Kim, S.H. Kwak, G.-H. Lee and Y.-D. Gong, Copper-Catalyzed Synthesis of 3-Substituted-5-amino-1,2,4-thiadiazoles via Intramolecular N–S Bond Formation, Tetrahedron, 70, 8737 (2014); https://doi.org/10.1016/j.tet.2014.09.023