Main Article Content

Abstract

In a large number of biologically active natural products and pharmaceuticals, the important substructures are sulfur containing heterocycles. Thioethers and other sulphur-rich molecules commonly occur in chemical biology, organic synthesis and material chemistry. In case of the formation of carbon-heteroatom bonds, copper catalyzed cross-coupling reactions provide a powerful tool as its cost is low and here the readily accessible and stable ligands are used. It has been recognized that copper catalyzed C–S coupling reactions are an efficacious strategy for synthesizing sulfur-rich heterocyclic compounds and so the strategy has gained worldwide attention. This review sums up recent research developments in the field of synthesis of sulfur-containing heterocycles using copper-catalyst.

Keywords

Copper Sulfur Heterocyclic compound Sulfur-heterocyles Cross-coupling C-S coupling.

Article Details

How to Cite
Muhuri, S., & Rahaman, H. (2022). Recent Developments in Synthesis of Sulfur Heterocycles via Copper-Catalyzed C-S Bond Formation Reaction: A Review. Asian Journal of Organic & Medicinal Chemistry, 7(2), 143–152. https://doi.org/10.14233/ajomc.2022.AJOMC-P383

References

  1. J. Hassan, M. Sevignon, C. Gozzi, E. Schulz and M. Lemaire, Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction, Chem. Rev., 102, 1359 (2002); https://doi.org/10.1021/cr000664r
  2. J.P. Corbet and G. Mignani, Selected Patented Cross-Coupling Reaction Technologies, Chem. Rev., 106, 2651 (2006); https://doi.org/10.1021/cr0505268
  3. D. Alberico, M.E. Scott and M. Lautens, Aryl-Aryl Bond Formation by Transition-Metal-Catalyzed Direct Arylation, Chem. Rev., 107, 174 (2007); https://doi.org/10.1021/cr0509760
  4. C. Liu, H. Zhang, W. Shi and A.W. Lei, Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions, Chem. Rev., 111, 1780 (2011); https://doi.org/10.1021/cr100379j
  5. J. Choi and G.C. Fu, Transition Metal–Catalyzed Alkyl-Alkyl bond Formation: Another Dimension in Cross-Coupling Chemistry, Science, 356, 152 (2017); https://doi.org/10.1126/science.aaf7230
  6. J.F. Hartwig, Transition Metal Catalyzed Synthesis of Arylamines and Aryl Ethers from Aryl Halides and Triflates: Scope and Mechanism, Angew. Chem. Int. Ed., 37, 2047 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980817)37:15<2046:: AID-ANIE2046>3.0.CO;2-L
  7. P. Wolfe, S. Wagaw, J.F.O. Marcoux and S.L. Buchwald, Rational Development of Practical Catalysts for Aromatic Carbon-Nitrogen Bond Formation, Acc. Chem. Res., 31, 805 (1998); https://doi.org/10.1021/ar9600650
  8. J.F. Hartwig, Carbon-Heteroatom Bond-Forming Reductive Eliminations of Amines, Ethers and Sulfides, Acc. Chem. Res., 31, 852 (1998); https://doi.org/10.1021/ar970282g
  9. B. Schlummer and U. Scholz, Palladium-Catalyzed C-N and C-O Coupling–A Practical Guide from an Industrial Vantage Point, Adv. Syn. Cat., 346, 1599 (2004); https://doi.org/10.1002/adsc.200404216
  10. J.F. Hartwig, Carbon–Heteroatom Bond Formation Catalysed by Organometallic Complexes, Nature, 455, 314 (2008); https://doi.org/10.1038/nature07369
  11. S.H. Cho, J.Y. Kim, J. Kwak and S. Chang, Recent Advances in the Transition Metal-catalyzed Two-fold Oxidative C–H Bond Activation Strategy For C–C And C–N Bond Formation, Chem. Soc. Rev., 40, 5068 (2011); https://doi.org/10.1039/c1cs15082k
  12. G. Evano, N. Blanchard and M. Toumi, Copper-Mediated Coupling Reactions and Their Applications in Natural Products and Designed Biomolecules Synthesis, Chem. Rev., 108, 3054 (2008); https://doi.org/10.1021/cr8002505
  13. G. Evano, M. Toumi and A. Coste, Copper-Catalyzed Cyclization Reactions for the Synthesis of Alkaloids, Chem. Commun., 4166 (2009); https://doi.org/10.1039/b905601g
  14. F. Monnier and M. Taillefer, Catalytic C-C, C-N, and C-O Ullmann-Type Coupling Reactions: Copper Makes a Difference, Angew. Chem. Int. Ed., 47, 3096 (2008); https://doi.org/10.1002/anie.200703209
  15. M. Carril, R. SanMartin and E. Dominguez, Palladium and Copper-Catalysed Arylation Reactions in the Presence of Water, with a Focus on Carbon–Heteroatom Bond Formation, Chem. Soc. Rev., 37, 639 (2008); https://doi.org/10.1039/b709565c
  16. I.P. Beletskaya and A.V. Cheprakov, Copper in Cross-Coupling Reactions: The Post-Ullmann Chemistry, Coord. Chem. Rev., 248, 2337 (2004); https://doi.org/10.1016/j.ccr.2004.09.014
  17. S.V. Ley and A.W. Thomas, Modern Synthetic Methods for Copper-Mediated C(aryl)-O, C(aryl)-N, and C(aryl)-S Bond Formation, Angew. Chem. Int. Ed., 42, 5400 (2003); https://doi.org/10.1002/anie.200300594
  18. K. Kunz, U. Scholz and D. Ganzer, Renaissance of Ullmann and Goldberg Reactions-Progress in Copper Catalyzed C-N-, C-O- and C-S-Coupling, Synlett, 2428 (2003); https://doi.org/10.1055/s-2003-42473
  19. S. Tekale, V. Jadhav, V. Pagore, S. Kauthale, D. Gaikwad and R. Pawar, Application Progress of Recent Advances in Some Copper Catalyzed Coupling Reactions, Mini Rev. Org. Chem., 10, 281 (2013); https://doi.org/10.2174/1570193X11310030007
  20. A. Sujatha, A.M. Thomas, A.P. Thankachan and G. Anilkumar, Recent advances in Copper-Catalyzed C-S Cross-coupling Reactions, ARKIVOC, 2015, 1 (2015); https://doi.org/10.3998/ark.5550190.p008.779
  21. Y. Liu and J.-P. Wan, Tandem Reactions Initiated by Copper-Catalyzed Cross-Coupling: A New Strategy Towards Heterocycle Synthesis, Org. Biomol. Chem., 9, 6873 (2011); https://doi.org/10.1039/c1ob05769c
  22. J. Nakayama, Eds.: A.R. Katritzky, C.W. Rees and E.F.V. Scriven, Eds. Comprehensive Heterocyclic Chemistry II, Oxford, p. 607 (1996).
  23. H.Y. Meltzer and H.C. Fibiger, Olanzapine: A New Atypical Antipsychotic Drug, Neuropsychopharmacology, 14, 83 (1996); https://doi.org/10.1016/0893-133X(95)00197-L
  24. X. Li, D. Conklin, H.-L. Pan and J.C. Eisenach, Allosteric Adenosine Receptor Modulation Reduces Hypersensitivity Following Peripheral Inflammation by a Central Mechanism, J. Pharmacol. Exp. Ther., 305, 950 (2003); https://doi.org/10.1124/jpet.102.047951
  25. S. Gronowitz and A.B. Hornfeldt, Thiophenes, Elsevier, U.K., Ed.: 1 (2004).
  26. S. Lethu, M. Ginisty, D. Bosc and J. Dubois, Discovery of a New Class of Protein Farnesyltransferase Inhibitors in the Arylthiophene Series, J. Med. Chem., 52, 6205 (2009); https://doi.org/10.1021/jm901280q
  27. L. Aurelio, C. Valant, B.L. Flynn, P.M. Sexton, A. Christopoulos and P.J. Scammells, Allosteric Modulators of the Adenosine A1 Receptor: Synthesis and Pharmacological Evaluation of 4-Substituted 2-Amino-3-benzoylthiophenes, J. Med. Chem., 52, 4543 (2009); https://doi.org/10.1021/jm9002582
  28. Q. Huang, P.F. Richardson, N.W. Sach, J. Zhu, K.K.-C. Liu, G.L. Smith and D.M. Bowles, Development of Scalable Syntheses of Selective PI3K inhibitors, Org. Process Res. Dev., 15, 556 (2011); https://doi.org/10.1021/op100286g
  29. R.M. Mohareb, A.E.M. Abdallah and M.A. Abdelaziz, New Approaches for the Synthesis of Pyrazole, Thiophene, Thieno[2,3-b]-pyridine and Thiazole Derivatives Together with their Anti-Tumor Evaluations, Med. Chem. Res., 23, 564 (2014); https://doi.org/10.1007/s00044-013-0664-7
  30. R. Sun, Y. Du, C. Tian, L. Li, H. Wang and Y.-L. Zhao, Copper(II)-Catalyzed Domino Reaction of the Acyclic Ketene-(S,S)-Acetals with Diazo Compounds: Convenient Synthesis of Poly-Substituted Thiophenes, Adv. Synth. Catal., 361, 5684 (2019); https://doi.org/10.1002/adsc.201901089
  31. J. Xiong, G. Zhong and Y. Liu, Domino Reactions Initiated by Copper-Catalyzed Aryl-I Bond Thiolation for the Switchable Synthesis of 2,3-Dihydrobenzothiazinones and Benzoisothiazolones, Adv. Synth. Catal., 361, 550 (2019); https://doi.org/10.1002/adsc.201801221
  32. Z.-H. Yang, H.-R. Tan, Y.-L. An, Y.-W. Zhao, H.-P. Lin and S.-Y. Zhao, Three-Component Coupling Reactions of Maleimides, Thiols, and Amines: One-Step Construction of 3,4-Heteroatom-Functionalized Maleimides by Copper-Catalyzed C(sp2)-H Thioamination, Adv. Synth. Catal., 360, 173 (2018); https://doi.org/10.1002/adsc.201700955
  33. Z. Gan, Q. Yan, G. Li, Q. Li, X. Dou, G.-Y. Li and D. Yang, Copper-Catalyzed Domino Synthesis of Sulfur-Containing Heterocycles Using Carbon Disulfide as a Building Block, Adv. Synth. Catal., 361, 4558 (2019); https://doi.org/10.1002/adsc.201900643
  34. I. Caleta, M. Kralj, M. Marjanovic, B. Bertoša, S. Tomic, G. Pavlovic, K. Pavelic and G. Karminski-Zamola, Novel Cyano- and Amidino-benzothiazole Derivatives: Synthesis, Antitumor Evaluation, and X-ray and Quantitative Structure-Activity Relationship (QSAR) Analysis, J. Med. Chem., 52, 1744 (2009); https://doi.org/10.1021/jm801566q
  35. H. Suter and H. Zutter, Studien über Benzthiazole als eventuelle orale Antidiabetica, Helv. Chim. Acta, 50, 1084 (1967); https://doi.org/10.1002/hlca.19670500415
  36. S.J. Hays, M.J. Rice, D.F. Ortwine, G. Johnson, R.D. Schwarz, D.K. Boyd, L.F. Copeland, M.G. Vartanian and P.A. Boxer, Substituted 2-Benzothiazolamines as Sodium Flux Inhibitors: Quantitative Structure-Activity Relationships and Anticonvulsant Activity, J. Pharm. Sci., 83, 1425 (1994); https://doi.org/10.1002/jps.2600831013
  37. K. Inamoto, C. Hasegawa, K. Hiroya and T. Doi, Palladium-Catalyzed Synthesis of 2-Substituted Benzothiazoles via a C-H Functionalization/Intramolecular C-S Bond Formation Process, Org. Lett., 10, 5147 (2008); https://doi.org/10.1021/ol802033p
  38. L.L. Joyce, G. Evindar and R.A. Batey, Copper- and Palladium-Catalyzed Intramolecular C–S Bond Formation: A Convenient Synthesis of 2-aminobenzothiazoles, Chem. Commun., 446 (2004); https://doi.org/10.1039/B311591G
  39. D. Ma, S. Xie, P. Xue, X. Zhang, J. Dong and Y. Jiang, Efficient and Economical Access to Substituted Benzothiazoles: Copper-Catalyzed Coupling of 2-Haloanilides with Metal Sulfides and Subsequent Condensation, Angew. Chem. Int. Ed., 48, 4222 (2009); https://doi.org/10.1002/anie.200900486
  40. Q. Ding, X. He and J. Wu, Synthesis of 2-Aminobenzothiazole via Copper(I)-Catalyzed Tandem Reaction of 2-Iodobenzenamine with Isothiocyanate, J. Comb. Chem., 11, 587 (2009); https://doi.org/10.1021/cc900027c
  41. G. Shen, X. Lv and W. Bao, Synthesis of N -Substituted-2-Amino-benzothiazoles by Ligand-Free Copper(I)-Catalyzed Cross-Coupling Reaction of 2-Haloanilines with Isothiocyanates, Eur. J. Org. Chem., 2009, 5897 (2009); https://doi.org/10.1002/ejoc.200900953
  42. R. Yao, H. Liu, Y. Wu and M. Cai, Ligand- and Solvent-Free Synthesis of 2-aminobenzothiazoles by Copper-catalyzed Tandem Reaction of 2-Haloanilines with Isothiocyanates, Appl. Organomet. Chem., 27, 109 (2013); https://doi.org/10.1002/aoc.2949
  43. C. Xie and Y. Zhang, A Copper-Catalyzed Domino Reaction of Alkynyl Bromides and Oxazolidine-2-thiones: Synthesis of Thiazol-2-ones, Asian J. Org. Chem., 7, 888 (2018); https://doi.org/10.1002/ajoc.201800154
  44. P. Guglielmi, D. Secci, A. Petzer, D. Bagetta, P. Chimenti, G. Rotondi, C. Ferrante, L. Recinella, S. Leone, S. Alcaro, G. Zengin, J.P. Petzer, F. Ortuso and S. Carradori, Benzo[b]tiophen-3-ol Derivatives as Effective Inhibitors of Human Monoamine Oxidase: Design, Synthesis and Biological Activity, J. Enzyme Inhib. Med. Chem., 34, 1511 (2019); https://doi.org/10.1080/14756366.2019.1653864
  45. M.R. Bleavins, F.A. de la Iglesia and J.A. McCay Jr., Immunotoxicologic Studies with CI-959, A Novel Benzothiophene Cell Activation Inhibitor, Toxicology, 98, 111 (1995); https://doi.org/10.1016/0300-483X(94)02985-4
  46. A. Gerwien, T. Reinhardt, P. Mayer and H. Dube, Synthesis of Double-Bond-Substituted Hemithioindigo Photoswitches, Org. Lett., 20, 232 (2018); https://doi.org/10.1021/acs.orglett.7b03574
  47. N. Sundaravelu, T. Singha, A. Nandy and G. Sekar, Copper-Catalyzed Domino Synthesis of Multi-substituted Benzo[b]thiophene through Radical Cyclization Using Xanthate as a Sulfur Surrogate, Chem. Commun., 57, 4512 (2021); https://doi.org/10.1039/D0CC08429H
  48. S. Murru, H. Ghosh, S.K. Sahoo and B.K. Patel, Intra- and Inter-molecular C-S Bond Formation Using a Single Catalytic System: First Direct Access to Arylthiobenzothiazoles, Org. Lett., 11, 4254 (2009); https://doi.org/10.1021/ol9017535
  49. C.J. Paget, K. Kisner, R.L. Stone and D.C. DeLong, Heterocyclic Substituted Ureas. II. Immunosuppressive and Antiviral Activity of Benzothiazolyl- and Benzoxazolylureas, J. Med. Chem., 12, 1016 (1969); https://doi.org/10.1021/jm00306a011
  50. P. Lours, Def. Veg., 24, 91 (1970).
  51. R.C. Young, R. C. Mitchell, T.H. Brown, C.R. Ganellin, R. Griffiths, M. Jones, K.K. Rana, D. Saunders, I.R. Smith, N.E. Sore, T.J. Wilks, Development of a New Physicochemical Model for Brain Penetration and its Application to the Design of Centrally acting H2 Receptor Histamine Antagonists, J. Med. Chem., 31, 656 (1988); https://doi.org/10.1021/jm00398a028
  52. F. Parlati, U.V. Ramesh, P.R. Singh, G. Donald, R. Lowe, G.C. Look, Benzothiazoles and Thiazolo[5,4-b]pyridines as Ubiquitin Ligase Inhibitors, their Preparation and Pharmaceutical Compositions, PCT Int. Appl. WO 2005037845 (2005).
  53. M. Yoshida, I. Hayakawa, N. Hayashi, T. Agatsuma, F. Tanzawa, Y. Oda, S. Iwasaki, K. Koyama, H. Furukawa, S. Kurakata and Y. Sugano, Synthesis and Biological Evaluation of Benzothiazole Derivatives as Potent Antitumor Agents, Bioorg. Med. Chem. Lett., 15, 3328 (2005); https://doi.org/10.1016/j.bmcl.2005.05.077
  54. A.S. Kalgutkar, I. Gardner, R.S. Obach, C.L. Shaffer, E. Callegari, K.R. Henne, A.E. Mutlib, D.K. Dalvie, J.S. Lee, Y. Nakai, J.P. O’Donnell, J. Boer and S.P. Harriman, A Comprehensive Listing of Bioactivation Pathways of Organic Functional Groups, Curr. Drug Metab., 6, 161 (2005); https://doi.org/10.2174/1389200054021799
  55. W. Hao, J. Huang, S. Jie and M. Cai, A Highly Efficient Copper(I)-Catalyzed Cascade Reaction of o-Alkenylphenyl Isothiocyanates with Isocyanides Leading to 5H-Benzo[d ]imidazo[5,1-b ][1,3]thiazines, Eur. J. Org. Chem., 6655 (2015); https://doi.org/10.1002/ejoc.201500800
  56. F. Wang, C. Chen, G. Deng and C. Xi, Concise Approach to Benzisothiazol-3(2H)-one via Copper-Catalyzed Tandem Reaction of o-Bromobenzamide and Potassium Thiocyanate in Water, J. Org. Chem., 77, 4148 (2012); https://doi.org/10.1021/jo300250x
  57. H.-H. Xu, X.-H. Zhang and X.-G. Zhang, Copper-Catalyzed Tandem Sulfuration/Annulation of Propargylamines with Sulfur via C–N Bond Cleavage, J. Org. Chem., 84, 7894 (2019); https://doi.org/10.1021/acs.joc.9b00685
  58. S.M. Soria-Castro, F.R. Bisogno and A.B. Peñéñory, Versatile One-pot Synthesis of Benzo-Fused Thiacycles by Copper Catalysis, Org. Chem. Front., 4, 1533 (2017); https://doi.org/10.1039/C6QO00776G
  59. X. Zhang, W. Zeng, Y. Yang, H. Huang and Y. Liang, Copper-Catalyzed Double C–S Bonds Formation via Different Paths: Synthesis of Benzothiazoles from N-Benzyl-2-iodoaniline and Potassium Sulfide, Org. Lett., 16, 876 (2014); https://doi.org/10.1021/ol403638d
  60. S. Sangeetha, P. Muthupandi and G. Sekar, Copper-Catalyzed Domino Synthesis of 2-Arylthiochromanones through Concomitant C–S Bond Formations Using Xanthate as Sulfur Source, Org. Lett., 17, 6006 (2015); https://doi.org/10.1021/acs.orglett.5b02977
  61. M.-Q. Huang, T.-J. Li, J.-Q. Liu, A. Shatskiy, M.D. Kärkäs and X.-S. Wang, Switchable Copper-Catalyzed Approach to Benzodithiole, Benzothia-selenole and Dibenzodithiocine Skeletons, Org. Lett., 22, 3454 (2020); https://doi.org/10.1021/acs.orglett.0c00907
  62. H.-Y. Kim, S.H. Kwak, G.-H. Lee and Y.-D. Gong, Copper-Catalyzed Synthesis of 3-Substituted-5-amino-1,2,4-thiadiazoles via Intramolecular N–S Bond Formation, Tetrahedron, 70, 8737 (2014); https://doi.org/10.1016/j.tet.2014.09.023