Main Article Content
Abstract
The aim of this work was to evaluate the physico-chemical, pharmacokinetic parameters (absorption, distribution, metabolism, excretion and toxicity) and pharmacodynamic parameters (bioactivity and adverse reactions) of substituted thiadiazole by means of in silico computational prediction. Online softwares such as Pre-ADMET, Molinspiration and rule of five were used for the analysis. Substituted thiadiazole fits the characteristics of drug-likeness, pharmacokinetic properties appropriate to the predicted patterns and activities within the scope for the treatment of infection in the stomach or duodenum (first part of the small intestine), gastritis and trypanosomiasis. Therefore, in silico results allow us to conclude that substituted thiadiazole is predicted to be a potential future drug candidate, due to its relevant Drug-likeness profile, bioavailability, excellent liposolubility and adequate pharmacokinetics, including at the level of CNS, penetrating the blood-brain barrier. Molecular docking studies have also been performed to screen the antibacterial and antifungal activities of the 50 designed compounds against protein targets Helicobacter pylori α-carbonic anhydrase (PDB: 5TUO) and Trypanosoma brucei Pteridine Reductase (PTR1) (PDB: 4WCD) respectively. Among all the compounds C11 exhibited the most significant affinity score against Helicobacter pylori α-carbonic anhydrase and C37 exhibited the most significant affinity score against Trypanosoma brucei pteridine reductase (PTR1) best significant hydrogen bonds interaction at the active site of protein.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Zabiulla, M.J. Nagesh Khadri, A.B. Begum, M.K. Sunil and S.A. Khanum, Synthesis, Docking and Biological Evaluation of Thiadiazole and Oxadiazole Derivatives as Antimicrobial and Antioxidant Agents, Res. in Chem., 2, 100045 (2020); https://doi.org/10.1016/j.rechem.2020.100045
- H. Ibraheem, Y. Al-Majedy and A. Al-Amiery, 4-Thiadiazole: The Biological Activities, Syst. Rev. Pharm., 9, 36 (2018); https://doi.org/10.5530/srp.2018.1.7
- C. Camoutsis, A. Geronikaki, A. Ciric, M. Sokoviæ, P. Zoumpoulakis and M. Zervou, Sulfonamide-1,2,4-thiadiazole Derivatives as Antifungal and Antibacterial Agents: Synthesis, Biological Evaluation, Lipophilicity, and Conformational Studies, Chem. Pharm. Bull. (Tokyo), 58, 160 (2010); https://doi.org/10.1248/cpb.58.160
- A.K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R.K. Agrawal, 1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities, Chem. Biol. Drug Des., 81, 557 (2013); https://doi.org/10.1111/cbdd.12125
- S.K. Talapatra, C.L. Tham, P. Guglielmi, R. Cirilli, B. Chandrasekaran, R. Karpoormath, S. Carradori and F. Kozielski, Crystal Structure of the Eg5-K858 Complex and Implications for Structure-Based Design of Thiadiazole containing Inhibitors, Eur. J. Med. Chem., 156, 641 (2018); https://doi.org/10.1016/j.ejmech.2018.07.006
- T. Katsila, G.A. Spyroulias, G.P. Patrinos and M.T. Matsoukas, Computational Approaches in Target Identification and Drug Discovery, Comput. Struct. Biotechnol. J., 14, 177 (2016); https://doi.org/10.1016/j.csbj.2016.04.004
- N. Kushwaha, S.K.S. Kushwaha and A.K. Rai, Biological Activities of Thiadiazole Derivatives: A Review, Int. J. ChemTech Res., 4, 517 (2012).
- Y. Yeni, S. Supandi and F. Merdekawati, in silico Toxicity Prediction of 1-Phenyl-1-(quinazolin-4-yl)ethanol Compounds by using Toxtree, pkCSM and preADMET, Pharmaciana, 8, 216 (2018); https://doi.org/10.12928/pharmaciana.v8i2.9508
- C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
- S.Z. Kovaèevic, L.R. Jevric, S.O. Podunavac Kuzmanovic and E.S. Loncar, Prediction of in silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives, Iran. J. Pharm. Res., 13, 899 (2014).
- S. Ghannay, A. Kadri and K. Aouadi, Synthesis, in vitro Antimicrobial Assessment, and Computational Investigation of Pharmacokinetic and Bioactivity Properties of Novel Trifluoromethylated Compounds using in silico ADME and Toxicity Prediction Tools, Monatsh. Chem., 151, 267 (2020); https://doi.org/10.1007/s00706-020-02550-4
- U.S. EPA T.E.S.T. Program; http://www.epa.gov/nrmrl /std/qsar/ qsar.htm
- R. Mannhold, Molecular Drug Properties. Measurement and Prediction. KGaA, Weinheim: Wiley-VHC Verlag GmbH & Co; p. 30 (2008).
- Y.H. Zhao, J. Le, M.H. Abraham, A. Hersey, P.J. Eddershaw, C.N. Luscombe, D. Boutina, G. Beck, B. Sherborne, I. Cooper and J.A. Platts, Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure–Activity Relationship (QSAR) with the Abraham Descriptors, J. Pharm. Sci., 90, 749 (2001); https://doi.org/10.1002/jps.1031
- J.D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J.W. Tolan, H.E. Selick and R. Grove, MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening, J. Pharm. Sci., 88, 28 (1999); https://doi.org/10.1021/js9803205
- S. Singh and J. Singh, Transdermal Drug Delivery by Passive Diffusion and Iontophoresis: A Review, Med. Res. Rev., 13, 569 (1993); https://doi.org/10.1002/med.2610130504
- A. Alexander, S. Dwivedi, Ajazuddin, T.K. Giri, S. Saraf, S. Saraf and D.K. Tripathi, Approaches for Breaking the Barriers of Drug Permeation through Transdermal Drug Delivery, J. Control. Rel., 164, 26 (2012); https://doi.org/10.1016/j.jconrel.2012.09.017
- J.R. Proudfoot, Drugs, Leads, and Drug-likeness: An Analysis of Some Recently Launched Drugs, Bioorg. Med. Chem. Lett., 12, 1647 (2002); https://doi.org/10.1016/S0960-894X(02)00244-5
- A.M. Dar, M.A. Khan, S. Mir and M.A. Gatoo, DNA Binding, Cleavage Activity, Molecular Docking, Cytotoxicity and Genotoxicity Studies of Newly Synthesized Copper Based Metal Complexes, Pharm. Anal. Acta, 7, 464 (2016); https://doi.org/10.4172/2153-2435.1000464
- T. Khan, S. Dixit, R. Ahmad, S. Raza, I. Azad, S. Joshi and A.R. Khan, Molecular Docking, PASS Analysis, Bioactivity Score Prediction, Synthesis, Characterization and Biological Activity Evaluation of a Functionalized 2-Butanone Thiosemicarbazone Ligand and its Complexes, J. Chem. Biol., 10, 91 (2017); https://doi.org/10.1007/s12154-017-0167-y
References
Zabiulla, M.J. Nagesh Khadri, A.B. Begum, M.K. Sunil and S.A. Khanum, Synthesis, Docking and Biological Evaluation of Thiadiazole and Oxadiazole Derivatives as Antimicrobial and Antioxidant Agents, Res. in Chem., 2, 100045 (2020); https://doi.org/10.1016/j.rechem.2020.100045
H. Ibraheem, Y. Al-Majedy and A. Al-Amiery, 4-Thiadiazole: The Biological Activities, Syst. Rev. Pharm., 9, 36 (2018); https://doi.org/10.5530/srp.2018.1.7
C. Camoutsis, A. Geronikaki, A. Ciric, M. Sokoviæ, P. Zoumpoulakis and M. Zervou, Sulfonamide-1,2,4-thiadiazole Derivatives as Antifungal and Antibacterial Agents: Synthesis, Biological Evaluation, Lipophilicity, and Conformational Studies, Chem. Pharm. Bull. (Tokyo), 58, 160 (2010); https://doi.org/10.1248/cpb.58.160
A.K. Jain, S. Sharma, A. Vaidya, V. Ravichandran and R.K. Agrawal, 1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities, Chem. Biol. Drug Des., 81, 557 (2013); https://doi.org/10.1111/cbdd.12125
S.K. Talapatra, C.L. Tham, P. Guglielmi, R. Cirilli, B. Chandrasekaran, R. Karpoormath, S. Carradori and F. Kozielski, Crystal Structure of the Eg5-K858 Complex and Implications for Structure-Based Design of Thiadiazole containing Inhibitors, Eur. J. Med. Chem., 156, 641 (2018); https://doi.org/10.1016/j.ejmech.2018.07.006
T. Katsila, G.A. Spyroulias, G.P. Patrinos and M.T. Matsoukas, Computational Approaches in Target Identification and Drug Discovery, Comput. Struct. Biotechnol. J., 14, 177 (2016); https://doi.org/10.1016/j.csbj.2016.04.004
N. Kushwaha, S.K.S. Kushwaha and A.K. Rai, Biological Activities of Thiadiazole Derivatives: A Review, Int. J. ChemTech Res., 4, 517 (2012).
Y. Yeni, S. Supandi and F. Merdekawati, in silico Toxicity Prediction of 1-Phenyl-1-(quinazolin-4-yl)ethanol Compounds by using Toxtree, pkCSM and preADMET, Pharmaciana, 8, 216 (2018); https://doi.org/10.12928/pharmaciana.v8i2.9508
C.A. Lipinski, F. Lombardo, B.W. Dominy and P.J. Feeney, Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Adv. Drug Deliv. Rev., 23, 3 (1997); https://doi.org/10.1016/S0169-409X(96)00423-1
S.Z. Kovaèevic, L.R. Jevric, S.O. Podunavac Kuzmanovic and E.S. Loncar, Prediction of in silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives, Iran. J. Pharm. Res., 13, 899 (2014).
S. Ghannay, A. Kadri and K. Aouadi, Synthesis, in vitro Antimicrobial Assessment, and Computational Investigation of Pharmacokinetic and Bioactivity Properties of Novel Trifluoromethylated Compounds using in silico ADME and Toxicity Prediction Tools, Monatsh. Chem., 151, 267 (2020); https://doi.org/10.1007/s00706-020-02550-4
U.S. EPA T.E.S.T. Program; http://www.epa.gov/nrmrl /std/qsar/ qsar.htm
R. Mannhold, Molecular Drug Properties. Measurement and Prediction. KGaA, Weinheim: Wiley-VHC Verlag GmbH & Co; p. 30 (2008).
Y.H. Zhao, J. Le, M.H. Abraham, A. Hersey, P.J. Eddershaw, C.N. Luscombe, D. Boutina, G. Beck, B. Sherborne, I. Cooper and J.A. Platts, Evaluation of Human Intestinal Absorption Data and Subsequent Derivation of a Quantitative Structure–Activity Relationship (QSAR) with the Abraham Descriptors, J. Pharm. Sci., 90, 749 (2001); https://doi.org/10.1002/jps.1031
J.D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J.W. Tolan, H.E. Selick and R. Grove, MDCK (Madin-Darby Canine Kidney) Cells: A Tool for Membrane Permeability Screening, J. Pharm. Sci., 88, 28 (1999); https://doi.org/10.1021/js9803205
S. Singh and J. Singh, Transdermal Drug Delivery by Passive Diffusion and Iontophoresis: A Review, Med. Res. Rev., 13, 569 (1993); https://doi.org/10.1002/med.2610130504
A. Alexander, S. Dwivedi, Ajazuddin, T.K. Giri, S. Saraf, S. Saraf and D.K. Tripathi, Approaches for Breaking the Barriers of Drug Permeation through Transdermal Drug Delivery, J. Control. Rel., 164, 26 (2012); https://doi.org/10.1016/j.jconrel.2012.09.017
J.R. Proudfoot, Drugs, Leads, and Drug-likeness: An Analysis of Some Recently Launched Drugs, Bioorg. Med. Chem. Lett., 12, 1647 (2002); https://doi.org/10.1016/S0960-894X(02)00244-5
A.M. Dar, M.A. Khan, S. Mir and M.A. Gatoo, DNA Binding, Cleavage Activity, Molecular Docking, Cytotoxicity and Genotoxicity Studies of Newly Synthesized Copper Based Metal Complexes, Pharm. Anal. Acta, 7, 464 (2016); https://doi.org/10.4172/2153-2435.1000464
T. Khan, S. Dixit, R. Ahmad, S. Raza, I. Azad, S. Joshi and A.R. Khan, Molecular Docking, PASS Analysis, Bioactivity Score Prediction, Synthesis, Characterization and Biological Activity Evaluation of a Functionalized 2-Butanone Thiosemicarbazone Ligand and its Complexes, J. Chem. Biol., 10, 91 (2017); https://doi.org/10.1007/s12154-017-0167-y