Main Article Content
Abstract
An innovative sequential step of detecting new medicines or drugs dependent on the information of a target is called drug design. The drug is a small molecule that alters the capacity of a bimolecular, example, protein, receptor or catalyst that leads to restorative incentive for patients. Designing of drug by computational method helped steady use of computational science to find, improve and study drugs as well as biologically related active molecules. The displaying examines like the structure-based plan; ligand-based drugs structure; database looking and restricting partiality dependent on the information of a biological target. In this article, we present the zones where CADD (computer aided drug design) devices uphold the medication disclosure measure.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- J.M. Beale and J.H. Wilson, Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincols Williams & Wilkins, Walters Kluwer Company, Ed.: 10, pp. 43-155 (1998).
- L. Boruah, A. Das, L.M. Nainwal, N. Agrawal and B. Shankar, In-Silico Drug Design: A Revolutionary Approach to Change the Concept of Current Drug Discovery Process, Indian J. Pharm. Biol. Res., 1, 60 (2013).
- M.S. Chorghade, Drug Discovery and Development,Wiley Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 233-269 (2006).
- K.O. Alfarouk, C.-M. Stock, S. Taylor, M. Walsh, A.K. Muddathir, D. Verduzco, A.H.H. Bashir, O.Y. Mohammed, G.O. Elhassan, S. Harguindey, S.J. Reshkin, M.E. Ibrahim and C. Rauch, Cancer Cell Int., 15, 71 (2015); https://doi.org/10.1186/s12935-015-0221-1
- C.-H. Lee, H.-C. Huang and H.-F. Juan, Reviewing Ligand-Based Rational Drug Design: The Search for an ATP Synthase Inhibitor, Int. J. Mol. Sci., 12, 5304 (2011); https://doi.org/10.3390/ijms12085304
- L. Pintilie and A. Stefaniu, Docking Studies on Novel Analogues of 8- Chloro- Quinolones against Staphylococcus aureus & Molecular Docking Studies of Some Novel Fluoroquinolone Derivatives, Intechopen, Chap. 5, pp. 1-15 (2018).
- A.J. Hopfinger, Computer-Assisted Drug Design, J. Med. Chem., 28, 1133 (1985); https://doi.org/10.1021/jm00147a001
- S.S. Imam and S.J. Gilani, Computer Aided Drug Design: A Novel Loom To Drug Discovery, Org. Med. Chem., 1, 555567 (2017); https://doi.org/10.19080/OMCIJ.2017.01.555567
- M.L. Peach and M.C. Nicklaus, Combining Docking with Pharmaco-phore Filtering for Improved Virtual Screening, J. Cheminform., 1, 6 (2009); https://doi.org/10.1186/1758-2946-1-6
- N.K. Shaikh, R.K. Jat and J.O. Bhangale, Analysis of Vildagliptin and Nateglinide for Simultaneous Estimation using Spectro-Chromatographic Methods, Eur. J. Mol. Clin. Med., 7, 741 (2020).
- N.K. Shaikh, R.K. Jat and J.O. Bhangale, Development and Validation of Stability Indicating RP-HPLC and UV Method for Simultaneous Quantitation of Repaglinide and Sitagliptin Phosphate in Combination, J. PharmTech Res., 10, 95 (2020); https://doi.org/10.46624/ajptr.2020.v10.i6.007
- L.G. Ferreira, R.N. Dos Santos, G. Oliva and A.D. Andricopulo, Molecular Docking and Structure-Based Drug Design Strategies, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
- A.C. Anderson, The Process of Structure-Based Drug Design, Chem. Biol., 10, 787 (2003); https://doi.org/10.1016/j.chembiol.2003.09.002
- I. Hoque, A. Chatterjee, S. Bhattacharya and R. Biswas, An Approach of Computer-Aided Drug Design (CADD) Toolsfor in silico Pharmaceutical Drug Design and Development, Int. J. Adv. Res. Biol. Sci., 4, 60 (2017); https://doi.org/10.22192/ijarbs.2017.04.02.009
- S.J. Macalino, V. Gosu, S. Hong and S. Choi, Role of Computer-Aided Drug Design in Modern Drug Discovery, Arch. Pharm. Res., 38, 1686 (2015); https://doi.org/10.1007/s12272-015-0640-5
- G. Maithri, B. Manasa, S.S. Vani, A. Narendra and T. Harshita, Computational Drug Design and Molecular Dynamic Studies-A Review, Biomed. Data Min., 6, 123 (2016); https://doi.org/10.4172/2090-4924.1000123
- S. Kar and K. Roy, How Far can Virtual Screening Take us in Drug Discovery? Expert Opin. Drug Discov., 8, 245 (2013); https://doi.org/10.1517/17460441.2013.761204
- S. Dutta and K. Sachan, Computed Aided Drug Design-A New Approach in Drug Design and Discovery, Int. J. Pharm. Sci. Rev. Res., 1, 146 (2010).
- C. Hansch, A. Leo, S.H. Unger, K.H. Kim, D. Nikaitani and E.J. Lien, Aromatic Substituent Constants for Structure-activity Correlations, J. Med. Chem., 16, 1207 (1973); https://doi.org/10.1021/jm00269a003
- A. Baldi, Computational Approaches for Drug Design and Discovery: An Overview, Syst. Rev. Pharm., 1, 99 (2010); https://doi.org/10.4103/0975-8453.59519
- S.F. Zhou and W.Z. Zhong, Drug Design and Discovery: Principles and Applications, Molecules, 22, 279 (2017); https://doi.org/10.3390/molecules22020279
- L.L. Thomas, D.A. Williams, V.F. Roche and S.W. Zito, Foye’s Principles of Medicinal Chemistry, Ed.: 7, vol. 18, pp. 29-283 (1974).
- J.H. Van Drie, Computer-Aided Drug Design: the Next 20 Years, J. Comput. Aided Mol. Des., 21, 591 (2007); https://doi.org/10.1007/s10822-007-9142-y
- F. Ooms, Molecular Modeling and Computer Aided Drug Design. Examples of their Applications in Medicinal Chemistry, Curr. Med. Chem., 7, 141 (2000); https://doi.org/10.2174/0929867003375317
- N.S. Pagadala, K. Syed and J. Tuszynski, Software for Molecular Docking: A Review, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1
- J. Bhangale, S. Acharya and T. Deshmukh, Antihyperglycaemic Activity of Ethanolic Extract of Grewia asiatica (L.) Leaves in Alloxan Induced Diabetic Mice, World J. Pharm. Res., 2, 1486 (2013).
- J.O. Bhangale, S.R. Acharya and N.S. Acharya, Neuroprotective Effect of Pet Ether Extract of Ficus religiosa (L.) Leaves in 3-Nitropropionic Acid Induced Huntington, Int. J. PharmTech. Res., 8, 57 (2015).
- J.O. Bhangale, S.R. Chaudhari, R.V. Shete and B.N. Kale, Antinociceptive and anti-inflammatory Effects of Tectona grandis (L.) Bark, Pharmacologyonline, 2, 856 (2010).
- T. Lengauer and M. Rarey, Computational Methods for Biomolecular Docking, Curr. Opin. Struct. Biol., 6, 402 (1996); https://doi.org/10.1016/S0959-440X(96)80061-3
- O.F. Guner, History and Evolution of the Pharmacophore Concept in Computer-Aided Drug Design, Curr. Top. Med. Chem., 2, 1321 (2002); https://doi.org/10.2174/1568026023392940
- S. Yang, Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances, Drug Discov. Today, 15, 444 (2010); https://doi.org/10.1016/j.drudis.2010.03.013
- J.C. Tong, Applications of Computer-Aided Drug Design in Drug Design: Principles and Applications, Springer Nature: Singapore Pte Ltd., Chap. 4, pp 1-16 (2017).
- S.K. Sharma, E. Sharma and Y. Sharma, A review: Recent Computational Approaches in Medicinal Chemistry: Computer Aided Drug Designing and Delivery, Pharma Innov., 6, 5 (2017).
- K. Stromgaard, P.K. Larsen and U. Madsen, Textbook of Drug Design and Discovery, Washington, DC Taylor & Francis, Ed.: 5, pp. 1061-1098 (2017).
- W.G. Richards, Computer-Aided Drug Design, Pure Appl. Chem., 66, 1589 (1994); https://doi.org/10.1351/pac199466081589
- A.Z. Dudek, T. Arodz and J. Galvez, Computational Methods in Developing Quantitative Structure-Activity Relationships (QSAR): A Review, Comb. Chem. High Throughput Screen., 9, 213 (2006); https://doi.org/10.2174/138620706776055539
- S. Myers and A. Baker, Drug Discovery—An Operating Model for a New Era, Nat. Biotechnol., 19, 727 (2001); https://doi.org/10.1038/90765
- C.M. Song, S.J. Lim and J.C. Tong, Recent Advances in Computer-Aided Drug Design, Brief. Bioinform., 10, 579 (2009); https://doi.org/10.1093/bib/bbp023
- N. Triballeau, H.-O. Bertrand and F. Acher, Eds.: T. Langer, R.D. Hoffmann, R. Mannhold, H. Kubinyi and G. Folkers, Pharmacophores and Pharmacophore Searches, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).
- J.P. Hughes, S. Rees, S.B. Kalindjian and K.L. Philpott, Principles of Early Drug Discovery, Br. J. Pharmacol., 162, 1239 (2011); https://doi.org/10.1111/j.1476-5381.2010.01127.x
- R. Prasad, V. Kumar, M. Kumar and D. Choudhary, Nano- Biotechnology in Bioformulations, Springer Science and Business Media, LLC, vol. 1 (2019).
- P. Aparoy, K. Kumar Reddy and P. Reddanna, Structure and Ligand Based Drug Design Strategies in the Development of Novel 5- LOX Inhibitors, Curr. Med. Chem., 19, 3763 (2012); https://doi.org/10.2174/092986712801661112
References
J.M. Beale and J.H. Wilson, Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincols Williams & Wilkins, Walters Kluwer Company, Ed.: 10, pp. 43-155 (1998).
L. Boruah, A. Das, L.M. Nainwal, N. Agrawal and B. Shankar, In-Silico Drug Design: A Revolutionary Approach to Change the Concept of Current Drug Discovery Process, Indian J. Pharm. Biol. Res., 1, 60 (2013).
M.S. Chorghade, Drug Discovery and Development,Wiley Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 233-269 (2006).
K.O. Alfarouk, C.-M. Stock, S. Taylor, M. Walsh, A.K. Muddathir, D. Verduzco, A.H.H. Bashir, O.Y. Mohammed, G.O. Elhassan, S. Harguindey, S.J. Reshkin, M.E. Ibrahim and C. Rauch, Cancer Cell Int., 15, 71 (2015); https://doi.org/10.1186/s12935-015-0221-1
C.-H. Lee, H.-C. Huang and H.-F. Juan, Reviewing Ligand-Based Rational Drug Design: The Search for an ATP Synthase Inhibitor, Int. J. Mol. Sci., 12, 5304 (2011); https://doi.org/10.3390/ijms12085304
L. Pintilie and A. Stefaniu, Docking Studies on Novel Analogues of 8- Chloro- Quinolones against Staphylococcus aureus & Molecular Docking Studies of Some Novel Fluoroquinolone Derivatives, Intechopen, Chap. 5, pp. 1-15 (2018).
A.J. Hopfinger, Computer-Assisted Drug Design, J. Med. Chem., 28, 1133 (1985); https://doi.org/10.1021/jm00147a001
S.S. Imam and S.J. Gilani, Computer Aided Drug Design: A Novel Loom To Drug Discovery, Org. Med. Chem., 1, 555567 (2017); https://doi.org/10.19080/OMCIJ.2017.01.555567
M.L. Peach and M.C. Nicklaus, Combining Docking with Pharmaco-phore Filtering for Improved Virtual Screening, J. Cheminform., 1, 6 (2009); https://doi.org/10.1186/1758-2946-1-6
N.K. Shaikh, R.K. Jat and J.O. Bhangale, Analysis of Vildagliptin and Nateglinide for Simultaneous Estimation using Spectro-Chromatographic Methods, Eur. J. Mol. Clin. Med., 7, 741 (2020).
N.K. Shaikh, R.K. Jat and J.O. Bhangale, Development and Validation of Stability Indicating RP-HPLC and UV Method for Simultaneous Quantitation of Repaglinide and Sitagliptin Phosphate in Combination, J. PharmTech Res., 10, 95 (2020); https://doi.org/10.46624/ajptr.2020.v10.i6.007
L.G. Ferreira, R.N. Dos Santos, G. Oliva and A.D. Andricopulo, Molecular Docking and Structure-Based Drug Design Strategies, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
A.C. Anderson, The Process of Structure-Based Drug Design, Chem. Biol., 10, 787 (2003); https://doi.org/10.1016/j.chembiol.2003.09.002
I. Hoque, A. Chatterjee, S. Bhattacharya and R. Biswas, An Approach of Computer-Aided Drug Design (CADD) Toolsfor in silico Pharmaceutical Drug Design and Development, Int. J. Adv. Res. Biol. Sci., 4, 60 (2017); https://doi.org/10.22192/ijarbs.2017.04.02.009
S.J. Macalino, V. Gosu, S. Hong and S. Choi, Role of Computer-Aided Drug Design in Modern Drug Discovery, Arch. Pharm. Res., 38, 1686 (2015); https://doi.org/10.1007/s12272-015-0640-5
G. Maithri, B. Manasa, S.S. Vani, A. Narendra and T. Harshita, Computational Drug Design and Molecular Dynamic Studies-A Review, Biomed. Data Min., 6, 123 (2016); https://doi.org/10.4172/2090-4924.1000123
S. Kar and K. Roy, How Far can Virtual Screening Take us in Drug Discovery? Expert Opin. Drug Discov., 8, 245 (2013); https://doi.org/10.1517/17460441.2013.761204
S. Dutta and K. Sachan, Computed Aided Drug Design-A New Approach in Drug Design and Discovery, Int. J. Pharm. Sci. Rev. Res., 1, 146 (2010).
C. Hansch, A. Leo, S.H. Unger, K.H. Kim, D. Nikaitani and E.J. Lien, Aromatic Substituent Constants for Structure-activity Correlations, J. Med. Chem., 16, 1207 (1973); https://doi.org/10.1021/jm00269a003
A. Baldi, Computational Approaches for Drug Design and Discovery: An Overview, Syst. Rev. Pharm., 1, 99 (2010); https://doi.org/10.4103/0975-8453.59519
S.F. Zhou and W.Z. Zhong, Drug Design and Discovery: Principles and Applications, Molecules, 22, 279 (2017); https://doi.org/10.3390/molecules22020279
L.L. Thomas, D.A. Williams, V.F. Roche and S.W. Zito, Foye’s Principles of Medicinal Chemistry, Ed.: 7, vol. 18, pp. 29-283 (1974).
J.H. Van Drie, Computer-Aided Drug Design: the Next 20 Years, J. Comput. Aided Mol. Des., 21, 591 (2007); https://doi.org/10.1007/s10822-007-9142-y
F. Ooms, Molecular Modeling and Computer Aided Drug Design. Examples of their Applications in Medicinal Chemistry, Curr. Med. Chem., 7, 141 (2000); https://doi.org/10.2174/0929867003375317
N.S. Pagadala, K. Syed and J. Tuszynski, Software for Molecular Docking: A Review, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1
J. Bhangale, S. Acharya and T. Deshmukh, Antihyperglycaemic Activity of Ethanolic Extract of Grewia asiatica (L.) Leaves in Alloxan Induced Diabetic Mice, World J. Pharm. Res., 2, 1486 (2013).
J.O. Bhangale, S.R. Acharya and N.S. Acharya, Neuroprotective Effect of Pet Ether Extract of Ficus religiosa (L.) Leaves in 3-Nitropropionic Acid Induced Huntington, Int. J. PharmTech. Res., 8, 57 (2015).
J.O. Bhangale, S.R. Chaudhari, R.V. Shete and B.N. Kale, Antinociceptive and anti-inflammatory Effects of Tectona grandis (L.) Bark, Pharmacologyonline, 2, 856 (2010).
T. Lengauer and M. Rarey, Computational Methods for Biomolecular Docking, Curr. Opin. Struct. Biol., 6, 402 (1996); https://doi.org/10.1016/S0959-440X(96)80061-3
O.F. Guner, History and Evolution of the Pharmacophore Concept in Computer-Aided Drug Design, Curr. Top. Med. Chem., 2, 1321 (2002); https://doi.org/10.2174/1568026023392940
S. Yang, Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances, Drug Discov. Today, 15, 444 (2010); https://doi.org/10.1016/j.drudis.2010.03.013
J.C. Tong, Applications of Computer-Aided Drug Design in Drug Design: Principles and Applications, Springer Nature: Singapore Pte Ltd., Chap. 4, pp 1-16 (2017).
S.K. Sharma, E. Sharma and Y. Sharma, A review: Recent Computational Approaches in Medicinal Chemistry: Computer Aided Drug Designing and Delivery, Pharma Innov., 6, 5 (2017).
K. Stromgaard, P.K. Larsen and U. Madsen, Textbook of Drug Design and Discovery, Washington, DC Taylor & Francis, Ed.: 5, pp. 1061-1098 (2017).
W.G. Richards, Computer-Aided Drug Design, Pure Appl. Chem., 66, 1589 (1994); https://doi.org/10.1351/pac199466081589
A.Z. Dudek, T. Arodz and J. Galvez, Computational Methods in Developing Quantitative Structure-Activity Relationships (QSAR): A Review, Comb. Chem. High Throughput Screen., 9, 213 (2006); https://doi.org/10.2174/138620706776055539
S. Myers and A. Baker, Drug Discovery—An Operating Model for a New Era, Nat. Biotechnol., 19, 727 (2001); https://doi.org/10.1038/90765
C.M. Song, S.J. Lim and J.C. Tong, Recent Advances in Computer-Aided Drug Design, Brief. Bioinform., 10, 579 (2009); https://doi.org/10.1093/bib/bbp023
N. Triballeau, H.-O. Bertrand and F. Acher, Eds.: T. Langer, R.D. Hoffmann, R. Mannhold, H. Kubinyi and G. Folkers, Pharmacophores and Pharmacophore Searches, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).
J.P. Hughes, S. Rees, S.B. Kalindjian and K.L. Philpott, Principles of Early Drug Discovery, Br. J. Pharmacol., 162, 1239 (2011); https://doi.org/10.1111/j.1476-5381.2010.01127.x
R. Prasad, V. Kumar, M. Kumar and D. Choudhary, Nano- Biotechnology in Bioformulations, Springer Science and Business Media, LLC, vol. 1 (2019).
P. Aparoy, K. Kumar Reddy and P. Reddanna, Structure and Ligand Based Drug Design Strategies in the Development of Novel 5- LOX Inhibitors, Curr. Med. Chem., 19, 3763 (2012); https://doi.org/10.2174/092986712801661112