Main Article Content

Abstract

An innovative sequential step of detecting new medicines or drugs dependent on the information of a target is called drug design. The drug is a small molecule that alters the capacity of a bimolecular, example, protein, receptor or catalyst that leads to restorative incentive for patients. Designing of drug by computational method helped steady use of computational science to find, improve and study drugs as well as biologically related active molecules. The displaying examines like the structure-based plan; ligand-based drugs structure; database looking and restricting partiality dependent on the information of a biological target. In this article, we present the zones where CADD (computer aided drug design) devices uphold the medication disclosure measure.

Keywords

CADD Biological target Molecular docking Drug discovery.

Article Details

How to Cite
Sharma, A., Jangid, L., Shaikh, N., & Bhangale, J. (2022). Computer-Aided Drug Design Boon in Drug Discovery. Asian Journal of Organic & Medicinal Chemistry, 7(1), 55–64. https://doi.org/10.14233/ajomc.2022.AJOMC-P361

References

  1. J.M. Beale and J.H. Wilson, Gisvold’s Textbook of Organic Medicinal and Pharmaceutical Chemistry, Lippincols Williams & Wilkins, Walters Kluwer Company, Ed.: 10, pp. 43-155 (1998).
  2. L. Boruah, A. Das, L.M. Nainwal, N. Agrawal and B. Shankar, In-Silico Drug Design: A Revolutionary Approach to Change the Concept of Current Drug Discovery Process, Indian J. Pharm. Biol. Res., 1, 60 (2013).
  3. M.S. Chorghade, Drug Discovery and Development,Wiley Interscience, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 233-269 (2006).
  4. K.O. Alfarouk, C.-M. Stock, S. Taylor, M. Walsh, A.K. Muddathir, D. Verduzco, A.H.H. Bashir, O.Y. Mohammed, G.O. Elhassan, S. Harguindey, S.J. Reshkin, M.E. Ibrahim and C. Rauch, Cancer Cell Int., 15, 71 (2015); https://doi.org/10.1186/s12935-015-0221-1
  5. C.-H. Lee, H.-C. Huang and H.-F. Juan, Reviewing Ligand-Based Rational Drug Design: The Search for an ATP Synthase Inhibitor, Int. J. Mol. Sci., 12, 5304 (2011); https://doi.org/10.3390/ijms12085304
  6. L. Pintilie and A. Stefaniu, Docking Studies on Novel Analogues of 8- Chloro- Quinolones against Staphylococcus aureus & Molecular Docking Studies of Some Novel Fluoroquinolone Derivatives, Intechopen, Chap. 5, pp. 1-15 (2018).
  7. A.J. Hopfinger, Computer-Assisted Drug Design, J. Med. Chem., 28, 1133 (1985); https://doi.org/10.1021/jm00147a001
  8. S.S. Imam and S.J. Gilani, Computer Aided Drug Design: A Novel Loom To Drug Discovery, Org. Med. Chem., 1, 555567 (2017); https://doi.org/10.19080/OMCIJ.2017.01.555567
  9. M.L. Peach and M.C. Nicklaus, Combining Docking with Pharmaco-phore Filtering for Improved Virtual Screening, J. Cheminform., 1, 6 (2009); https://doi.org/10.1186/1758-2946-1-6
  10. N.K. Shaikh, R.K. Jat and J.O. Bhangale, Analysis of Vildagliptin and Nateglinide for Simultaneous Estimation using Spectro-Chromatographic Methods, Eur. J. Mol. Clin. Med., 7, 741 (2020).
  11. N.K. Shaikh, R.K. Jat and J.O. Bhangale, Development and Validation of Stability Indicating RP-HPLC and UV Method for Simultaneous Quantitation of Repaglinide and Sitagliptin Phosphate in Combination, J. PharmTech Res., 10, 95 (2020); https://doi.org/10.46624/ajptr.2020.v10.i6.007
  12. L.G. Ferreira, R.N. Dos Santos, G. Oliva and A.D. Andricopulo, Molecular Docking and Structure-Based Drug Design Strategies, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
  13. A.C. Anderson, The Process of Structure-Based Drug Design, Chem. Biol., 10, 787 (2003); https://doi.org/10.1016/j.chembiol.2003.09.002
  14. I. Hoque, A. Chatterjee, S. Bhattacharya and R. Biswas, An Approach of Computer-Aided Drug Design (CADD) Toolsfor in silico Pharmaceutical Drug Design and Development, Int. J. Adv. Res. Biol. Sci., 4, 60 (2017); https://doi.org/10.22192/ijarbs.2017.04.02.009
  15. S.J. Macalino, V. Gosu, S. Hong and S. Choi, Role of Computer-Aided Drug Design in Modern Drug Discovery, Arch. Pharm. Res., 38, 1686 (2015); https://doi.org/10.1007/s12272-015-0640-5
  16. G. Maithri, B. Manasa, S.S. Vani, A. Narendra and T. Harshita, Computational Drug Design and Molecular Dynamic Studies-A Review, Biomed. Data Min., 6, 123 (2016); https://doi.org/10.4172/2090-4924.1000123
  17. S. Kar and K. Roy, How Far can Virtual Screening Take us in Drug Discovery? Expert Opin. Drug Discov., 8, 245 (2013); https://doi.org/10.1517/17460441.2013.761204
  18. S. Dutta and K. Sachan, Computed Aided Drug Design-A New Approach in Drug Design and Discovery, Int. J. Pharm. Sci. Rev. Res., 1, 146 (2010).
  19. C. Hansch, A. Leo, S.H. Unger, K.H. Kim, D. Nikaitani and E.J. Lien, Aromatic Substituent Constants for Structure-activity Correlations, J. Med. Chem., 16, 1207 (1973); https://doi.org/10.1021/jm00269a003
  20. A. Baldi, Computational Approaches for Drug Design and Discovery: An Overview, Syst. Rev. Pharm., 1, 99 (2010); https://doi.org/10.4103/0975-8453.59519
  21. S.F. Zhou and W.Z. Zhong, Drug Design and Discovery: Principles and Applications, Molecules, 22, 279 (2017); https://doi.org/10.3390/molecules22020279
  22. L.L. Thomas, D.A. Williams, V.F. Roche and S.W. Zito, Foye’s Principles of Medicinal Chemistry, Ed.: 7, vol. 18, pp. 29-283 (1974).
  23. J.H. Van Drie, Computer-Aided Drug Design: the Next 20 Years, J. Comput. Aided Mol. Des., 21, 591 (2007); https://doi.org/10.1007/s10822-007-9142-y
  24. F. Ooms, Molecular Modeling and Computer Aided Drug Design. Examples of their Applications in Medicinal Chemistry, Curr. Med. Chem., 7, 141 (2000); https://doi.org/10.2174/0929867003375317
  25. N.S. Pagadala, K. Syed and J. Tuszynski, Software for Molecular Docking: A Review, Biophys. Rev., 9, 91 (2017); https://doi.org/10.1007/s12551-016-0247-1
  26. J. Bhangale, S. Acharya and T. Deshmukh, Antihyperglycaemic Activity of Ethanolic Extract of Grewia asiatica (L.) Leaves in Alloxan Induced Diabetic Mice, World J. Pharm. Res., 2, 1486 (2013).
  27. J.O. Bhangale, S.R. Acharya and N.S. Acharya, Neuroprotective Effect of Pet Ether Extract of Ficus religiosa (L.) Leaves in 3-Nitropropionic Acid Induced Huntington, Int. J. PharmTech. Res., 8, 57 (2015).
  28. J.O. Bhangale, S.R. Chaudhari, R.V. Shete and B.N. Kale, Antinociceptive and anti-inflammatory Effects of Tectona grandis (L.) Bark, Pharmacologyonline, 2, 856 (2010).
  29. T. Lengauer and M. Rarey, Computational Methods for Biomolecular Docking, Curr. Opin. Struct. Biol., 6, 402 (1996); https://doi.org/10.1016/S0959-440X(96)80061-3
  30. O.F. Guner, History and Evolution of the Pharmacophore Concept in Computer-Aided Drug Design, Curr. Top. Med. Chem., 2, 1321 (2002); https://doi.org/10.2174/1568026023392940
  31. S. Yang, Pharmacophore Modeling and Applications in Drug Discovery: Challenges and Recent Advances, Drug Discov. Today, 15, 444 (2010); https://doi.org/10.1016/j.drudis.2010.03.013
  32. J.C. Tong, Applications of Computer-Aided Drug Design in Drug Design: Principles and Applications, Springer Nature: Singapore Pte Ltd., Chap. 4, pp 1-16 (2017).
  33. S.K. Sharma, E. Sharma and Y. Sharma, A review: Recent Computational Approaches in Medicinal Chemistry: Computer Aided Drug Designing and Delivery, Pharma Innov., 6, 5 (2017).
  34. K. Stromgaard, P.K. Larsen and U. Madsen, Textbook of Drug Design and Discovery, Washington, DC Taylor & Francis, Ed.: 5, pp. 1061-1098 (2017).
  35. W.G. Richards, Computer-Aided Drug Design, Pure Appl. Chem., 66, 1589 (1994); https://doi.org/10.1351/pac199466081589
  36. A.Z. Dudek, T. Arodz and J. Galvez, Computational Methods in Developing Quantitative Structure-Activity Relationships (QSAR): A Review, Comb. Chem. High Throughput Screen., 9, 213 (2006); https://doi.org/10.2174/138620706776055539
  37. S. Myers and A. Baker, Drug Discovery—An Operating Model for a New Era, Nat. Biotechnol., 19, 727 (2001); https://doi.org/10.1038/90765
  38. C.M. Song, S.J. Lim and J.C. Tong, Recent Advances in Computer-Aided Drug Design, Brief. Bioinform., 10, 579 (2009); https://doi.org/10.1093/bib/bbp023
  39. N. Triballeau, H.-O. Bertrand and F. Acher, Eds.: T. Langer, R.D. Hoffmann, R. Mannhold, H. Kubinyi and G. Folkers, Pharmacophores and Pharmacophore Searches, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006).
  40. J.P. Hughes, S. Rees, S.B. Kalindjian and K.L. Philpott, Principles of Early Drug Discovery, Br. J. Pharmacol., 162, 1239 (2011); https://doi.org/10.1111/j.1476-5381.2010.01127.x
  41. R. Prasad, V. Kumar, M. Kumar and D. Choudhary, Nano- Biotechnology in Bioformulations, Springer Science and Business Media, LLC, vol. 1 (2019).
  42. P. Aparoy, K. Kumar Reddy and P. Reddanna, Structure and Ligand Based Drug Design Strategies in the Development of Novel 5- LOX Inhibitors, Curr. Med. Chem., 19, 3763 (2012); https://doi.org/10.2174/092986712801661112