Main Article Content

Abstract

In present study, the synthesized substituted homoisoflavonoid derivatives were screened for their in vivo/in vitro antiarthritic activity, in vitro anti-inflammatory and DPPH free radical scavenging activity. The male Wistar rats were used for investigation of in vivo antiarthritic activity against complete freund’s adjuvant (CFA) induced arthritis and assessment was done for change in paw volume, serum marker enzymes (ALP, SGOT and SGPT) and membrane stabilization potential. in vitro anti-inflammatory activity was assessed by the protein denaturation method. In vitro free radical scavenging activity was assessed by the DPPH method. The result indicated that compound HIFa showed a significant antiarthritic activity as compared to other substituted homoisoflavonoid derivatives. The significant membrane stabilization and inhibition of protein denaturation showed in vitro antiarthritic and anti-inflammatory activity of substituted homoisoflavonoid derivatives. The substituted homoisoflavonoid derivatives showed dose dependent DPPH free radical scavenging activity. From the present study, it was observed that the iodo derivative of substituted homoisoflavonoid derivatives have significant pharmacological activities as compared to floro and hydroxyl derivatives.

Keywords

Homoisoflavonoid derivatives Anti-inflammatory activity DPPH assay Antiarthritic activity Homoisoflavonoid derivatives.

Article Details

How to Cite
Gaikwad, D., Murkute, R., & Gaikwad, S. (2022). Pharmacological Investigation of Fluoro, Iodo and Hydroxy Derivative of Chloro Substituted Homoisoflavonoids. Asian Journal of Organic & Medicinal Chemistry, 7(1), 31–36. https://doi.org/10.14233/ajomc.2022.AJOMC-P357

References

  1. L.G. Lin, Q.Y. Liu and Y. Ye, Naturally Occurring Homoisoflavonoids and their Pharmacological Activities, Planta Med., 13, 1053 (2014); https://doi.org/10.1055/s-0034-1383026
  2. A. Litwic, M.H. Edwards, E.M. Dennison and C. Cooper, Epidemiology and Burden of Osteoarthritis, Br. Med. Bull., 105, 185 (2013); https://doi.org/10.1093/bmb/lds038
  3. K.A. Martin Ginis and A.L. Hicks, Considerations for the Development of a Physical Activity Guide for Canadians with Physical Disabilities, Appl. Physiol. Nutr. Metab., 32(S2E), S135 (2007); https://doi.org/10.1139/H07-108
  4. R.S. Hinman, M.A. Hunt, M.W. Creaby, T.V. Wrigley, F.J. McManus and K.L. Bennell, Hip Muscle Weakness in Individuals with Medial Knee Osbteoarthritis, Arthritis Care Res., 62, 1190 (2010); https://doi.org/10.1002/acr.20199
  5. R. Kakkar, P. Aggarwal, S.D. Kandpal and S.K. Bansal, An Epidemiological Study to Assess Morbidity Profile Among Geriatric Population in District Dehradun, Indian J. Community Health, 25, 39 (2013).
  6. L.E. Schanberg, K.K. Anthony, K.M. Gil and E.C. Maurin, Daily Pain and Symptoms in Children with Polyarticular Arthritis, Arthritis Rheum., 48, 1390 (2003); https://doi.org/10.1002/art.10986
  7. J. Bullock, S.A. Rizvi, A.M. Saleh, S.S. Ahmed, D.P. Do, R.A. Ansari and J. Ahmed, Rheumatoid Arthritis: A Brief Overview of the Treatment, J. Med. Princ. Pract., 27, 501 (2018); https://doi.org/10.1159/000493390
  8. S. Pazmino, A. Boonen, D. De Cock, V. Stouten, J. Joly, D. Bertrand, R. Westhovens and P. Verschueren, Short-Term Glucocorticoids Reduce Risk of Chronic NSAID and Analgesic use in Early Methotrexate-Treated Rheumatoid Arthritis Patients with Favourable Prognosis: Subanalysis of the CareRA Randomised Controlled Trial, RMD Open, 7, e001615 (2021); https://doi.org/10.1136/rmdopen-2021-001615
  9. B.M. Abegaz and H.H. Kinfe, Naturally Occurring Homoisoflavonoids: Phytochemistry, Biological Activities, and Synthesis (Part II), Nat. Prod. Commun., 14, 1 (2019); https://doi.org/10.1177/1934578X19845813
  10. V. Siddaiah, C.V. Rao, S. Venkateswarlu, A.V. Krishnaraju and G.V. Subbaraju, Synthesis, Stereochemical Assignments, and Biological Activities of Homoisoflavonoids, Bioorg. Med. Chem., 14, 2545 (2006); https://doi.org/10.1016/j.bmc.2005.11.031
  11. A.G. González, F. León, L. Sánchez-Pinto, J.I. Padrón and J. Bermejo, Phenolic Compounds of Dragon's Blood from Dracaena draco, J. Nat. Prod., 63, 1297 (2000); https://doi.org/10.1021/np000085h
  12. K.K. Purushothaman, K. Kalyani, K. Subramaniam and S.P. Shanmughanathan, Structure of Bonducellin-A New Homoisoflavone from Caesalpinia bonducella, Indian J. Chem., 21B, 383 (1982).
  13. D.D. McPherson, G.A. Cordell, D.D. Soejarto, J.M. Pezzuto and H.H.S. Fong, Peltogynoids and Homoisoflavonoids from Caesalpinia pulcherrima, Phytochemistry, 22, 2835 (1983); https://doi.org/10.1016/S0031-9422(00)97708-2
  14. M.N. Ghosh, Fundamentals of Experimental Pharmacology, Scientific Book Agency, Calcutta, Ed.: 2, pp. 153-158, (1984).
  15. U. Snekhalatha, M. Anburajan, B. Venkatraman and M. Menaka, Evaluation of Complete Freund’s Adjuvant-Induced Arthritis in a Wistar Rat Model, Z. Rheumatol., 72, 375 (2013); https://doi.org/10.1007/s00393-012-1083-8
  16. H. Shirota, S. Kobayashi, H. Shjoiiri and T. Igarashi, Determination of Inflamed Paw Surface Temperature in Rats, J. Pharmacol. Methods, 12, 35 (1984); https://doi.org/10.1016/0160-5402(84)90004-4
  17. U.S. Jijith and S. Jayakumari, Determination of Inflamed Paw Surface Temperature in Rats, Res. J. Pharm. Technol., 13, 2373 (2020); https://doi.org/10.5958/0974-360X.2020.00426.6
  18. T.K.M. Saleem, A.K. Azeem, C. Dilip, C. Sankar, N.V. Prasanth and R. Duraisami, Anti–inflammatory Activity of the Leaf Extacts of Gendarussa vulgaris Nees, Asian Pac. J. Trop. Biomed., 1, 147 (2011); https://doi.org/10.1016/S2221-1691(11)60014-2
  19. M.M. Hossain, M.S.H. Kabir, A. Hasanat, M.I. Kabir, T.A. Chowdhury and A.S.M.G. Kibria, Investigation of in vitro Anti-arthritic and Membrane Stabilizing Activity of Ethanol Extracts of Three Bangladeshi Plants, Pharma Innov., 1, 76 (2015).
  20. M.I. Hina and J.C. Rose, In Vitro Anti-Inflammatory and Antiarthritic Activity of Pergularia daemia Leaves and Roots, Int. J. Drug Dev. Res., 10, 10 (2018).
  21. B.M. Guchu, A.K. Machocho, S.K. Mwihia and M.P. Ngugi, In Vitro Antioxidant Activities of Methanolic Extracts of Caesalpinia volkensii Harms., Vernonia lasiopus O. Hoffm., and Acacia hockii De Wild, Evid. Based Complement. Alternat. Med., 2020, 3586268 (2020); https://doi.org/10.1155/2020/3586268
  22. A. Bendele, Animal Models of Rheumatoid Arthritis, J. Musculoskelet. Neuronal Interact., 1, 377 (2001).
  23. K.M. Kamel, O.M. Abd El-Raouf, S.A. Metwally, H.A. Abd El-Latif and M.E. Elsayed, Hesperidin and Rutin, Antioxidant Citrus Flavonoids, Attenuate Cisplatin-Induced Nephrotoxicity in Rats, J. Biochem. Mol. Toxicol., 28, 312 (2014); https://doi.org/10.1002/jbt.21567
  24. M.Z. Ullah, A.U. Khan, R. Afridi, H. Rasheed, S. Khalid, M. Naveed, H. Ali, Y.S. Kim and S. Khan, Attenuation of Inflammatory Pain by Puerarin in Animal Model of Inflammation through Inhibition of Pro-inflammatory Mediators, Int. Immunopharmacol., 61, 306 (2018); https://doi.org/10.1016/j.intimp.2018.05.034
  25. C.S. Kumari, N. Yasmin, M.R. Hussain and M. Babuselvam, in vitro Anti-inflammatory and Anti-Arthritic Property of Rhizopora Mucronata Leaves, Int. J. Pharm. Sci. Res., 6, 482 (2015).
  26. C. Gardi, K. Bauerova, B. Stringa, V. Kuncirova, L. Slovak, S. Ponist, F. Drafi, L. Bezakova, I. Tedesco, A. Acquaviva, S. Bilotto and G.L. Russo, Quercetin Reduced Inflammation and Increased Antioxidant Defense in Rat Adjuvant Arthritis, Arch. Biochem. Biophys., 583, 150 (2015); https://doi.org/10.1016/j.abb.2015.08.008
  27. S. Chandra, P. Chatterjee, P. Dey and S. Bhattacharya, Evaluation of in vitro Anti-inflammatory Activity of Coffee against the Denaturation of Protein, Asian Pac. J. Trop. Biomed., 2, S178 (2012); https://doi.org/10.1016/S2221-1691(12)60154-3
  28. M. Okawa, J. Kinjo, T. Nohara and M. Ono, DPPH (1,1-Diphenyl-2-Picrylhydrazyl) Radical Scavenging Activity of Flavonoids Obtained from Some Medicinal Plants, Biol. Pharm. Bull., 24, 1202 (2001); https://doi.org/10.1248/bpb.24.1202