Main Article Content
Abstract
1,3-Dipolar cycloaddition of in situ generated non-stabilized azomethine ylides through the decarboxylative condensation of sarcosine and substituted isatins with 2-(arylmethylene)-2,3-dihydro-1H-inden-1-ones in microwave produced dispiro[1H-indene-2,3′-pyrrolidine-2′,3′′-[3H]indole]-1,2′′(1′′H)diones in a highly stereo- and regio-selective fashion. The synthesized compounds were subjected to antibacterial and antifungal studies. It was found that many compounds possess a considerable antibacterial and antifungal activity against all the tested organisms.
Keywords
Article Details
Copyright (c) 2022 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- C.B. Cui, H. Kakeya and H. Osada, Novel Mammalian Cell Cycle Inhibitors, Spirotryprostatins A and B, Produced by Aspergillus fumigatus, which Inhibit Mammalian Cell Cycle at G2/M Phase, Tetrahedron, 52, 12651 (1996); https://doi.org/10.1016/0040-4020(96)00737-5
- C.B. Cui, H. Kakeya and H. Osada, Spirotryprostatin B, A Novel Mammalian Cell Cycle Inhibitor Produced by Aspergillus fumigatus, J. Antibiot. (Tokyo), 49, 832 (1996); https://doi.org/10.7164/antibiotics.49.832
- M.N.G. James and G.J.B. Williams, The Molecular and Crystal Structure of an Oxindole Alkaloid (6-Hydroxy-2¢-(2-methylpropyl)-3,3¢-spirotetrahydropyrrolidino-oxindole), Can. J. Chem., 50, 2407 (1972); https://doi.org/10.1139/v72-386
- A. Jossang, P. Jossang, H.A. Hadi, T. Se’venet and B. Bodo, Horsfiline, an Oxindole Alkaloid from Horsfieldia superba, J. Org. Chem., 56, 6527 (1991); https://doi.org/10.1021/jo00023a016
- D.G. Giménez, E.G. Prado, T.S. Rodríguez, A.F. Arche and R. De la Puerta, Cytotoxic Effect of the Pentacyclic Oxindole Alkaloid Mitraphylline Isolated from Uncaria tomentosa Bark on Human Ewing’s Sarcoma and Breast Cancer Cell Lines, Planta Med., 76, 133 (2010); https://doi.org/10.1055/s-0029-1186048
- K. Jones and J. Wilkinson, A Total Synthesis of Horsfiline via Aryl Radical Cyclisation, J. Chem. Soc. Chem. Commun., 1767 (1992); https://doi.org/10.1039/c39920001767
- J.-Y. Laronze, S.-I. Bascop, J. Sapi and J. Le’vy, On the Synthesis of the Oxindole Alkaloid: (±)-Horsfiline, Heterocycles, 38, 725 (1994); https://doi.org/10.3987/COM-93-6639
- C. Pellegrini, C. Strassler, M. Weber and H.J. Borschberg, Synthesis of the Oxindole Alkaloid (-)-Horsfiline, Tetrahedron Asymm., 5, 1979 (1994); https://doi.org/10.1016/S0957-4166(00)86273-4
- G. Palmisano, R. Annunziata, G. Papeo and G.M. Sisti, Oxindole Alkaloids. A Novel Non-Biomimetic Entry to (-)-Horsfiline, Tetrahedron Asymm., 7, 1 (1996); https://doi.org/10.1016/0957-4166(95)00406-8
- E. Garcia Prado, M.D. Garcia Gimenez, R. De la Puerta Vazquez, J.L. Espartero Sanchez and M.T. Saenz Rodriguez, Antiproliferative Effects of Mitraphylline, A Pentacyclic Oxindole Alkaloid of Uncaria tomentosa on Human Glioma and Neuroblastoma Cell Lines, Phytomedicine, 14, 280 (2007); https://doi.org/10.1016/j.phymed.2006.12.023
- R.D. Connell, The 2-Oxindole Chemotype And Patent Activity Inspired by the SU5416 Franchise, Expert Opin. Ther. Pat., 13, 737 (2003); https://doi.org/10.1517/13543776.13.6.737
- J. Ma, S. Li, K. Reed, P. Guo and J.M. Gallo, Pharmacodynamic-Mediated Effects of the Angiogenesis Inhibitor SU5416 on the Tumor Disposition of Temozolomide in Subcutaneous and Intracerebral Glioma Xenograft Models, J. Pharmacol. Exp. Ther., 305, 833 (2003); https://doi.org/10.1124/jpet.102.048587
- P. Marzola, A. Degrassi, L. Calderan, P. Farace, C. Crescimanno, E. Nicolato, A. Giusti, E. Pesenti, A. Terron, A. Sbarbati, T. Abrams, L. Murray and F. Osculati, In vivo Assessment of Antiangiogenic Activity of SU6668 in an Experimental Colon Carcinoma Model, Clin. Cancer Res., 10, 739 (2004); https://doi.org/10.1158/1078-0432.CCR-0828-03
- M.E. Lane, B. Yu, A. Rice, K.E. Lipson, C. Liang, L. Sun, C. Tang, G. McMahon, R.G. Pestell and S. Wadler, A Novel cdk2-Selective Inhibitor, SU9516, Induces Apoptosis in Colon Carcinoma Cells, Cancer Res., 15, 6170 (2001).
- A.H. Abadi, S.M. Abou-Seri, D.E. Abdel-Rahman, C. Klein, O. Lozach and L. Meijer, Synthesis of 3-Substituted-2-oxoindole Analogues and their Evaluation as Kinase Inhibitors, Anticancer and Antiangiogenic Agents, Eur. J. Med. Chem., 41, 296 (2006); https://doi.org/10.1016/j.ejmech.2005.12.004
- M. Somei, K. Noguchi, R. Yamagami, Y. Kawada, K. Yamada and F. Yamada, Heterocycles, 53, 7 (2000); https://doi.org/10.3987/COM-99-8743
- S.M. Colegate, N. Anderton, J. Edgar, C.A. Bourke and R.N. Oram, Suspected Blue Canary Grass (Phalaris coerulescens) Poisoning of Horses, Aust. Vet., 77, 537 (1999); https://doi.org/10.1111/avj.1999.77.8.537
- A.A. Kelemen, G. Satala, A.J. Bojarski and G.M. Keseru, Spiro-[pyrrolidine-3,3¢-oxindoles] and Their Indoline Analogues as New 5-HT6 Receptor Chemotypes, Molecules, 22, 2221 (2017); https://doi.org/10.3390/molecules22122221
- M.E. Kuehne, D.M. Roland and R. Hafter, Studies in Biomimetic Alkaloid Syntheses. 2. Synthesis of Vincadifformine from Tetrahydro-b-carboline through a Secodine Intermediate, J. Org. Chem., 43, 3705 (1978); https://doi.org/10.1021/jo00413a015
- C. Fischer, C. Meyers and E.M. Carreira, Efficient Synthesis of (±)-Horsfiline through the MgI2-Catalyzed Ring-Expansion Reaction of a Spiro[cyclopropane-1,3¢-indol]-2¢-one, Helv. Chim. Acta, 83, 1175 (2000); https://doi.org/10.1002/1522-2675(20000607)83:6<1175::AID-HLCA1175>3.0.CO;2-D
- G. Cravotto, G.B. Giovenzana, T. Pilati, M. Sisti and G. Palmisano, Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (-)-Horsfiline, J. Org. Chem., 66, 8447 (2001); https://doi.org/10.1021/jo015854w
- N. Selvakumar, A.M. Azhagan, D. Srinivas and G.G. Krishna, A Direct Synthesis of 2-Arylpropenoic Acid Esters having Nitro Groups in the Aromatic Ring: A Short Synthesis of (±)-coerulescine and (±)-Horsfiline, Tetrahedron Lett., 43, 9175 (2002); https://doi.org/10.1016/S0040-4039(02)02267-0
- M.-Y. Chang, C.-L. Pai and Y.-H. Kung, Synthesis of (±)-Coerulescine and a Formal Synthesis of (±)-Horsfiline, Tetrahedron Lett., 46, 8463 (2005); https://doi.org/10.1016/j.tetlet.2005.10.015
- K. Jones and J. Wilkinson, A Total Synthesis of Horsfiline via Aryl Radical Cyclisation, J. Chem. Soc. Chem. Commun., 1767 (1992); https://doi.org/10.1039/C39920001767
- D.E. Lizos and J.A. Murphy, Concise Synthesis Of (±)-horsfiline and (±)-Coerulescine by Tandem Cyclisation of Iodoaryl Alkenyl Azides, Org. Biomol. Chem., 1, 117 (2003); https://doi.org/10.1039/B208114H
- J. Cossy, M. Cases and D.G. Pardo, A Convenient Route to Spiro-pyrrolidinyl-oxindole Alkaloids via C-3 Substituted ene-Pyrrolidine Carbamate Radical Cyclization, Tetrahedron Lett., 39, 2331 (1998); https://doi.org/10.1016/S0040-4039(98)00193-2
- D. Lizos, R. Tripoli and J.A. Murphy, A Novel and Economical Route to (±)-Horsfiline using an Aryl Iodoazide Tandem Radical Cyclisation Strategy, Chem. Commun., 2732 (2001); https://doi.org/10.1039/b108622g
- J.A. Murphy, R. Tripoli, T.A. Khan and U.M. Mali, Novel Phosphorus Radical-Based Routes to Horsfiline, Org. Lett., 7, 3287 (2005); https://doi.org/10.1021/ol051095i
- G. Lakshmaiah, T. Kawabata, M. Shang and K. Fuji, Total Synthesis of (-)-Horsfiline via Asymmetric Nitroolefination, J. Org. Chem., 64, 1699 (1999); https://doi.org/10.1021/jo981577q
- S. Jaegli J.-P. Vors, L. Neuville, J. Zhu, Total Synthesis of Horsfiline: A Palladium-Catalyzed Domino Heck-Cyanation Strategy, Synlett, 18, 2997 (2009); https://doi.org/10.1055/s-0029-1218004
- B.M. Trost and M.K. Brennan, Palladium Asymmetric Allylic Alkylation of Prochiral Nucleophiles: Horsfiline, Org. Lett., 8, 2027 (2006); https://doi.org/10.1021/ol060298j
- V.J. Reddy and C.J. Douglas, Highly Enantioselective Intramolecular Cyanoamidation: (+)-Horsfiline, (-)-Coerulescine, and (-)-Esermethole, Org. Lett., 12, 952 (2010); https://doi.org/10.1021/ol902949d
- O.R. Suárez-Castillo, M. Meléndez-Rodríguez, Y.M. Contreras-Martínez, A. Alvarez - Hernández, M.S. Morales-Ríos and P. Joseph-Nathan, DMD Mediated Formal Synthesis of (±)-Coerulescine, Nat. Prod. Commun., 4, 797 (2009).
- J.E. Thomson, A.F. Kyle, K.B. Ling, S.R. Smith, A.M.Z. Slawin and A.D. Smith, Applications of NHC-Mediated O- to C-Carboxyl Transfer: Synthesis of (±)-N-Benzyl-coerulescine and (±)-Horsfiline, Tetrahedron, 66, 3801 (2010); https://doi.org/10.1016/j.tet.2010.03.047
- J.D. White, Y. Li and D.C. Ihle, Tandem Intramolecular Photo-cycloaddition-Retro-Mannich Fragmentation as a Route to Spiro-[pyrrolidine-3,3¢-oxindoles]. Total Synthesis of (±)-Coerulescine, (±)-Horsfiline, (±)-Elacomine, and (±)-6-Deoxyelacomine, J. Org. Chem., 75, 3569 (2010); https://doi.org/10.1021/jo1002714
- M. Henary, C. Kanada, L. Rotolo, B. Savino, E.A. Owens and G. Cravotto, Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry, RSC Adv., 10, 14170 (2020); https://doi.org/10.1039/D0RA01378A
- M. Driowya, A. Saber, H. Marzag, L. Demange, R. Benhida and K. Bougrin, Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and their Fused Analogues, Molecules, 21, 492 (2016); https://doi.org/10.3390/molecules21040492
- V. Molteni and D.A. Ellis, Recent Advances in Microwave-Assisted Synthesis of Heterocyclic Compounds, Curr. Org. Synth., 2, 333 (2005); https://doi.org/10.2174/1570179054368518
- A. Majumder, R. Gupta and A. Jain, Microwave-Assisted Synthesis of Nitrogen-Containing Heterocycles, Green Chem. Lett. Rev., 6, 151 (2013); https://doi.org/10.1080/17518253.2012.733032
- A.R. Katritzky and S.K. Singh, Microwave-Assisted Heterocyclic Synthesis, ARKIVOC, 68 (2003); https://doi.org/10.3998/ark.5550190.0004.d09
- A.P. Molchanov, M.M. Efremova, M.A. Kryukova and M.A. Kuznetsov, Selective and Reversible 1,3-Dipolar Cycloaddition of 6-Aryl-1,5-diazabicyclo[3.1.0]hexanes with 1,3-Diphenylprop-2-en-1-ones under Microwave Irradiation, Beilstein J. Org. Chem., 16, 2679 (2020); https://doi.org/10.3762/bjoc.16.218
- M. Neuschl, D. Bogdal and M. Potacek, Molecules, 12, 49 (2007); https://doi.org/10.3390/12010049
- E.E. Veverkova and S. Toma, Microwave-Assisted 1,3-Dipolar Cycloaddition. Synthesis of Substituted 9-(1,2,3-Triazol-1-yl)acridines, Chem. Pap., 59, 350 (2005).
- M. Xia, Microwave Irradiation for the Oxidative 1,3-Dipolar Cycloaddition of Aldehyde Phenylhydrazones and Methyl Acrylate by (Diacetoxy)Iobenzene, J. Chem. Res. (S), 418 (2003); https://doi.org/10.3184/030823403103174353
- R.S. Kusurkar and U.D. Kannadkar, 1,3-Dipolar Cycloaddition Reactions Assisted by Microwave Radiation and Gamma Radiation, Synth. Commun., 31, 2235 (2001); https://doi.org/10.1081/SCC-100104820
- P.S. Mane, S.G. Shirodkar, B.R Arbad and T.K. Chondhekar, Synthesis and Characterization of Manganese(II), Cobalt(II), Nickel(II), and Copper(II) Complexes of Schiff Base Derivatives of Dehydroacetic Acid, Indian J. Chem., 40, 648 (2001).
- N. Raman and S. Parameswari, Designing and Synthesis of Antifungal Active Macrocyclic Ligand and its Complexes Derived from Diethyl-phthalate and Benzidine, Mycobiology, 35, 65 (2007). https://doi.org/10.4489/MYCO.2007.35.2.065
References
C.B. Cui, H. Kakeya and H. Osada, Novel Mammalian Cell Cycle Inhibitors, Spirotryprostatins A and B, Produced by Aspergillus fumigatus, which Inhibit Mammalian Cell Cycle at G2/M Phase, Tetrahedron, 52, 12651 (1996); https://doi.org/10.1016/0040-4020(96)00737-5
C.B. Cui, H. Kakeya and H. Osada, Spirotryprostatin B, A Novel Mammalian Cell Cycle Inhibitor Produced by Aspergillus fumigatus, J. Antibiot. (Tokyo), 49, 832 (1996); https://doi.org/10.7164/antibiotics.49.832
M.N.G. James and G.J.B. Williams, The Molecular and Crystal Structure of an Oxindole Alkaloid (6-Hydroxy-2¢-(2-methylpropyl)-3,3¢-spirotetrahydropyrrolidino-oxindole), Can. J. Chem., 50, 2407 (1972); https://doi.org/10.1139/v72-386
A. Jossang, P. Jossang, H.A. Hadi, T. Se’venet and B. Bodo, Horsfiline, an Oxindole Alkaloid from Horsfieldia superba, J. Org. Chem., 56, 6527 (1991); https://doi.org/10.1021/jo00023a016
D.G. Giménez, E.G. Prado, T.S. Rodríguez, A.F. Arche and R. De la Puerta, Cytotoxic Effect of the Pentacyclic Oxindole Alkaloid Mitraphylline Isolated from Uncaria tomentosa Bark on Human Ewing’s Sarcoma and Breast Cancer Cell Lines, Planta Med., 76, 133 (2010); https://doi.org/10.1055/s-0029-1186048
K. Jones and J. Wilkinson, A Total Synthesis of Horsfiline via Aryl Radical Cyclisation, J. Chem. Soc. Chem. Commun., 1767 (1992); https://doi.org/10.1039/c39920001767
J.-Y. Laronze, S.-I. Bascop, J. Sapi and J. Le’vy, On the Synthesis of the Oxindole Alkaloid: (±)-Horsfiline, Heterocycles, 38, 725 (1994); https://doi.org/10.3987/COM-93-6639
C. Pellegrini, C. Strassler, M. Weber and H.J. Borschberg, Synthesis of the Oxindole Alkaloid (-)-Horsfiline, Tetrahedron Asymm., 5, 1979 (1994); https://doi.org/10.1016/S0957-4166(00)86273-4
G. Palmisano, R. Annunziata, G. Papeo and G.M. Sisti, Oxindole Alkaloids. A Novel Non-Biomimetic Entry to (-)-Horsfiline, Tetrahedron Asymm., 7, 1 (1996); https://doi.org/10.1016/0957-4166(95)00406-8
E. Garcia Prado, M.D. Garcia Gimenez, R. De la Puerta Vazquez, J.L. Espartero Sanchez and M.T. Saenz Rodriguez, Antiproliferative Effects of Mitraphylline, A Pentacyclic Oxindole Alkaloid of Uncaria tomentosa on Human Glioma and Neuroblastoma Cell Lines, Phytomedicine, 14, 280 (2007); https://doi.org/10.1016/j.phymed.2006.12.023
R.D. Connell, The 2-Oxindole Chemotype And Patent Activity Inspired by the SU5416 Franchise, Expert Opin. Ther. Pat., 13, 737 (2003); https://doi.org/10.1517/13543776.13.6.737
J. Ma, S. Li, K. Reed, P. Guo and J.M. Gallo, Pharmacodynamic-Mediated Effects of the Angiogenesis Inhibitor SU5416 on the Tumor Disposition of Temozolomide in Subcutaneous and Intracerebral Glioma Xenograft Models, J. Pharmacol. Exp. Ther., 305, 833 (2003); https://doi.org/10.1124/jpet.102.048587
P. Marzola, A. Degrassi, L. Calderan, P. Farace, C. Crescimanno, E. Nicolato, A. Giusti, E. Pesenti, A. Terron, A. Sbarbati, T. Abrams, L. Murray and F. Osculati, In vivo Assessment of Antiangiogenic Activity of SU6668 in an Experimental Colon Carcinoma Model, Clin. Cancer Res., 10, 739 (2004); https://doi.org/10.1158/1078-0432.CCR-0828-03
M.E. Lane, B. Yu, A. Rice, K.E. Lipson, C. Liang, L. Sun, C. Tang, G. McMahon, R.G. Pestell and S. Wadler, A Novel cdk2-Selective Inhibitor, SU9516, Induces Apoptosis in Colon Carcinoma Cells, Cancer Res., 15, 6170 (2001).
A.H. Abadi, S.M. Abou-Seri, D.E. Abdel-Rahman, C. Klein, O. Lozach and L. Meijer, Synthesis of 3-Substituted-2-oxoindole Analogues and their Evaluation as Kinase Inhibitors, Anticancer and Antiangiogenic Agents, Eur. J. Med. Chem., 41, 296 (2006); https://doi.org/10.1016/j.ejmech.2005.12.004
M. Somei, K. Noguchi, R. Yamagami, Y. Kawada, K. Yamada and F. Yamada, Heterocycles, 53, 7 (2000); https://doi.org/10.3987/COM-99-8743
S.M. Colegate, N. Anderton, J. Edgar, C.A. Bourke and R.N. Oram, Suspected Blue Canary Grass (Phalaris coerulescens) Poisoning of Horses, Aust. Vet., 77, 537 (1999); https://doi.org/10.1111/avj.1999.77.8.537
A.A. Kelemen, G. Satala, A.J. Bojarski and G.M. Keseru, Spiro-[pyrrolidine-3,3¢-oxindoles] and Their Indoline Analogues as New 5-HT6 Receptor Chemotypes, Molecules, 22, 2221 (2017); https://doi.org/10.3390/molecules22122221
M.E. Kuehne, D.M. Roland and R. Hafter, Studies in Biomimetic Alkaloid Syntheses. 2. Synthesis of Vincadifformine from Tetrahydro-b-carboline through a Secodine Intermediate, J. Org. Chem., 43, 3705 (1978); https://doi.org/10.1021/jo00413a015
C. Fischer, C. Meyers and E.M. Carreira, Efficient Synthesis of (±)-Horsfiline through the MgI2-Catalyzed Ring-Expansion Reaction of a Spiro[cyclopropane-1,3¢-indol]-2¢-one, Helv. Chim. Acta, 83, 1175 (2000); https://doi.org/10.1002/1522-2675(20000607)83:6<1175::AID-HLCA1175>3.0.CO;2-D
G. Cravotto, G.B. Giovenzana, T. Pilati, M. Sisti and G. Palmisano, Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (-)-Horsfiline, J. Org. Chem., 66, 8447 (2001); https://doi.org/10.1021/jo015854w
N. Selvakumar, A.M. Azhagan, D. Srinivas and G.G. Krishna, A Direct Synthesis of 2-Arylpropenoic Acid Esters having Nitro Groups in the Aromatic Ring: A Short Synthesis of (±)-coerulescine and (±)-Horsfiline, Tetrahedron Lett., 43, 9175 (2002); https://doi.org/10.1016/S0040-4039(02)02267-0
M.-Y. Chang, C.-L. Pai and Y.-H. Kung, Synthesis of (±)-Coerulescine and a Formal Synthesis of (±)-Horsfiline, Tetrahedron Lett., 46, 8463 (2005); https://doi.org/10.1016/j.tetlet.2005.10.015
K. Jones and J. Wilkinson, A Total Synthesis of Horsfiline via Aryl Radical Cyclisation, J. Chem. Soc. Chem. Commun., 1767 (1992); https://doi.org/10.1039/C39920001767
D.E. Lizos and J.A. Murphy, Concise Synthesis Of (±)-horsfiline and (±)-Coerulescine by Tandem Cyclisation of Iodoaryl Alkenyl Azides, Org. Biomol. Chem., 1, 117 (2003); https://doi.org/10.1039/B208114H
J. Cossy, M. Cases and D.G. Pardo, A Convenient Route to Spiro-pyrrolidinyl-oxindole Alkaloids via C-3 Substituted ene-Pyrrolidine Carbamate Radical Cyclization, Tetrahedron Lett., 39, 2331 (1998); https://doi.org/10.1016/S0040-4039(98)00193-2
D. Lizos, R. Tripoli and J.A. Murphy, A Novel and Economical Route to (±)-Horsfiline using an Aryl Iodoazide Tandem Radical Cyclisation Strategy, Chem. Commun., 2732 (2001); https://doi.org/10.1039/b108622g
J.A. Murphy, R. Tripoli, T.A. Khan and U.M. Mali, Novel Phosphorus Radical-Based Routes to Horsfiline, Org. Lett., 7, 3287 (2005); https://doi.org/10.1021/ol051095i
G. Lakshmaiah, T. Kawabata, M. Shang and K. Fuji, Total Synthesis of (-)-Horsfiline via Asymmetric Nitroolefination, J. Org. Chem., 64, 1699 (1999); https://doi.org/10.1021/jo981577q
S. Jaegli J.-P. Vors, L. Neuville, J. Zhu, Total Synthesis of Horsfiline: A Palladium-Catalyzed Domino Heck-Cyanation Strategy, Synlett, 18, 2997 (2009); https://doi.org/10.1055/s-0029-1218004
B.M. Trost and M.K. Brennan, Palladium Asymmetric Allylic Alkylation of Prochiral Nucleophiles: Horsfiline, Org. Lett., 8, 2027 (2006); https://doi.org/10.1021/ol060298j
V.J. Reddy and C.J. Douglas, Highly Enantioselective Intramolecular Cyanoamidation: (+)-Horsfiline, (-)-Coerulescine, and (-)-Esermethole, Org. Lett., 12, 952 (2010); https://doi.org/10.1021/ol902949d
O.R. Suárez-Castillo, M. Meléndez-Rodríguez, Y.M. Contreras-Martínez, A. Alvarez - Hernández, M.S. Morales-Ríos and P. Joseph-Nathan, DMD Mediated Formal Synthesis of (±)-Coerulescine, Nat. Prod. Commun., 4, 797 (2009).
J.E. Thomson, A.F. Kyle, K.B. Ling, S.R. Smith, A.M.Z. Slawin and A.D. Smith, Applications of NHC-Mediated O- to C-Carboxyl Transfer: Synthesis of (±)-N-Benzyl-coerulescine and (±)-Horsfiline, Tetrahedron, 66, 3801 (2010); https://doi.org/10.1016/j.tet.2010.03.047
J.D. White, Y. Li and D.C. Ihle, Tandem Intramolecular Photo-cycloaddition-Retro-Mannich Fragmentation as a Route to Spiro-[pyrrolidine-3,3¢-oxindoles]. Total Synthesis of (±)-Coerulescine, (±)-Horsfiline, (±)-Elacomine, and (±)-6-Deoxyelacomine, J. Org. Chem., 75, 3569 (2010); https://doi.org/10.1021/jo1002714
M. Henary, C. Kanada, L. Rotolo, B. Savino, E.A. Owens and G. Cravotto, Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry, RSC Adv., 10, 14170 (2020); https://doi.org/10.1039/D0RA01378A
M. Driowya, A. Saber, H. Marzag, L. Demange, R. Benhida and K. Bougrin, Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and their Fused Analogues, Molecules, 21, 492 (2016); https://doi.org/10.3390/molecules21040492
V. Molteni and D.A. Ellis, Recent Advances in Microwave-Assisted Synthesis of Heterocyclic Compounds, Curr. Org. Synth., 2, 333 (2005); https://doi.org/10.2174/1570179054368518
A. Majumder, R. Gupta and A. Jain, Microwave-Assisted Synthesis of Nitrogen-Containing Heterocycles, Green Chem. Lett. Rev., 6, 151 (2013); https://doi.org/10.1080/17518253.2012.733032
A.R. Katritzky and S.K. Singh, Microwave-Assisted Heterocyclic Synthesis, ARKIVOC, 68 (2003); https://doi.org/10.3998/ark.5550190.0004.d09
A.P. Molchanov, M.M. Efremova, M.A. Kryukova and M.A. Kuznetsov, Selective and Reversible 1,3-Dipolar Cycloaddition of 6-Aryl-1,5-diazabicyclo[3.1.0]hexanes with 1,3-Diphenylprop-2-en-1-ones under Microwave Irradiation, Beilstein J. Org. Chem., 16, 2679 (2020); https://doi.org/10.3762/bjoc.16.218
M. Neuschl, D. Bogdal and M. Potacek, Molecules, 12, 49 (2007); https://doi.org/10.3390/12010049
E.E. Veverkova and S. Toma, Microwave-Assisted 1,3-Dipolar Cycloaddition. Synthesis of Substituted 9-(1,2,3-Triazol-1-yl)acridines, Chem. Pap., 59, 350 (2005).
M. Xia, Microwave Irradiation for the Oxidative 1,3-Dipolar Cycloaddition of Aldehyde Phenylhydrazones and Methyl Acrylate by (Diacetoxy)Iobenzene, J. Chem. Res. (S), 418 (2003); https://doi.org/10.3184/030823403103174353
R.S. Kusurkar and U.D. Kannadkar, 1,3-Dipolar Cycloaddition Reactions Assisted by Microwave Radiation and Gamma Radiation, Synth. Commun., 31, 2235 (2001); https://doi.org/10.1081/SCC-100104820
P.S. Mane, S.G. Shirodkar, B.R Arbad and T.K. Chondhekar, Synthesis and Characterization of Manganese(II), Cobalt(II), Nickel(II), and Copper(II) Complexes of Schiff Base Derivatives of Dehydroacetic Acid, Indian J. Chem., 40, 648 (2001).
N. Raman and S. Parameswari, Designing and Synthesis of Antifungal Active Macrocyclic Ligand and its Complexes Derived from Diethyl-phthalate and Benzidine, Mycobiology, 35, 65 (2007). https://doi.org/10.4489/MYCO.2007.35.2.065