Main Article Content

Abstract

1,3-Dipolar cycloaddition of in situ generated non-stabilized azomethine ylides through the decarboxylative condensation of sarcosine and substituted isatins with 2-(arylmethylene)-2,3-dihydro-1H-inden-1-ones in microwave produced dispiro[1H-indene-2,3′-pyrrolidine-2′,3′′-[3H]indole]-1,2′′(1′′H)diones in a highly stereo- and regio-selective fashion. The synthesized compounds were subjected to antibacterial and antifungal studies. It was found that many compounds possess a considerable antibacterial and antifungal activity against all the tested organisms.

Keywords

1 3-Dipolar cycloaddition Azomethine Ylides Dispiro compounds Antibacterial activity Antifungal activity.

Article Details

How to Cite
Kaleeswari, M., & Harikrishnan, P. (2022). Microwave Assisted a Highly Atom Economic, Chemo-, Regio- and Stereoselective Synthesis and Evaluation of Dispiro[1H-indene-2,3′-pyrrolidine-2′,3′′-[3H]indole]-1,2′′(1′′H)diones as Antibacterial and Antifungal Agents. Asian Journal of Organic & Medicinal Chemistry, 7(1), 23–30. https://doi.org/10.14233/ajomc.2022.AJOMC-P356

References

  1. C.B. Cui, H. Kakeya and H. Osada, Novel Mammalian Cell Cycle Inhibitors, Spirotryprostatins A and B, Produced by Aspergillus fumigatus, which Inhibit Mammalian Cell Cycle at G2/M Phase, Tetrahedron, 52, 12651 (1996); https://doi.org/10.1016/0040-4020(96)00737-5
  2. C.B. Cui, H. Kakeya and H. Osada, Spirotryprostatin B, A Novel Mammalian Cell Cycle Inhibitor Produced by Aspergillus fumigatus, J. Antibiot. (Tokyo), 49, 832 (1996); https://doi.org/10.7164/antibiotics.49.832
  3. M.N.G. James and G.J.B. Williams, The Molecular and Crystal Structure of an Oxindole Alkaloid (6-Hydroxy-2¢-(2-methylpropyl)-3,3¢-spirotetrahydropyrrolidino-oxindole), Can. J. Chem., 50, 2407 (1972); https://doi.org/10.1139/v72-386
  4. A. Jossang, P. Jossang, H.A. Hadi, T. Se’venet and B. Bodo, Horsfiline, an Oxindole Alkaloid from Horsfieldia superba, J. Org. Chem., 56, 6527 (1991); https://doi.org/10.1021/jo00023a016
  5. D.G. Giménez, E.G. Prado, T.S. Rodríguez, A.F. Arche and R. De la Puerta, Cytotoxic Effect of the Pentacyclic Oxindole Alkaloid Mitraphylline Isolated from Uncaria tomentosa Bark on Human Ewing’s Sarcoma and Breast Cancer Cell Lines, Planta Med., 76, 133 (2010); https://doi.org/10.1055/s-0029-1186048
  6. K. Jones and J. Wilkinson, A Total Synthesis of Horsfiline via Aryl Radical Cyclisation, J. Chem. Soc. Chem. Commun., 1767 (1992); https://doi.org/10.1039/c39920001767
  7. J.-Y. Laronze, S.-I. Bascop, J. Sapi and J. Le’vy, On the Synthesis of the Oxindole Alkaloid: (±)-Horsfiline, Heterocycles, 38, 725 (1994); https://doi.org/10.3987/COM-93-6639
  8. C. Pellegrini, C. Strassler, M. Weber and H.J. Borschberg, Synthesis of the Oxindole Alkaloid (-)-Horsfiline, Tetrahedron Asymm., 5, 1979 (1994); https://doi.org/10.1016/S0957-4166(00)86273-4
  9. G. Palmisano, R. Annunziata, G. Papeo and G.M. Sisti, Oxindole Alkaloids. A Novel Non-Biomimetic Entry to (-)-Horsfiline, Tetrahedron Asymm., 7, 1 (1996); https://doi.org/10.1016/0957-4166(95)00406-8
  10. E. Garcia Prado, M.D. Garcia Gimenez, R. De la Puerta Vazquez, J.L. Espartero Sanchez and M.T. Saenz Rodriguez, Antiproliferative Effects of Mitraphylline, A Pentacyclic Oxindole Alkaloid of Uncaria tomentosa on Human Glioma and Neuroblastoma Cell Lines, Phytomedicine, 14, 280 (2007); https://doi.org/10.1016/j.phymed.2006.12.023
  11. R.D. Connell, The 2-Oxindole Chemotype And Patent Activity Inspired by the SU5416 Franchise, Expert Opin. Ther. Pat., 13, 737 (2003); https://doi.org/10.1517/13543776.13.6.737
  12. J. Ma, S. Li, K. Reed, P. Guo and J.M. Gallo, Pharmacodynamic-Mediated Effects of the Angiogenesis Inhibitor SU5416 on the Tumor Disposition of Temozolomide in Subcutaneous and Intracerebral Glioma Xenograft Models, J. Pharmacol. Exp. Ther., 305, 833 (2003); https://doi.org/10.1124/jpet.102.048587
  13. P. Marzola, A. Degrassi, L. Calderan, P. Farace, C. Crescimanno, E. Nicolato, A. Giusti, E. Pesenti, A. Terron, A. Sbarbati, T. Abrams, L. Murray and F. Osculati, In vivo Assessment of Antiangiogenic Activity of SU6668 in an Experimental Colon Carcinoma Model, Clin. Cancer Res., 10, 739 (2004); https://doi.org/10.1158/1078-0432.CCR-0828-03
  14. M.E. Lane, B. Yu, A. Rice, K.E. Lipson, C. Liang, L. Sun, C. Tang, G. McMahon, R.G. Pestell and S. Wadler, A Novel cdk2-Selective Inhibitor, SU9516, Induces Apoptosis in Colon Carcinoma Cells, Cancer Res., 15, 6170 (2001).
  15. A.H. Abadi, S.M. Abou-Seri, D.E. Abdel-Rahman, C. Klein, O. Lozach and L. Meijer, Synthesis of 3-Substituted-2-oxoindole Analogues and their Evaluation as Kinase Inhibitors, Anticancer and Antiangiogenic Agents, Eur. J. Med. Chem., 41, 296 (2006); https://doi.org/10.1016/j.ejmech.2005.12.004
  16. M. Somei, K. Noguchi, R. Yamagami, Y. Kawada, K. Yamada and F. Yamada, Heterocycles, 53, 7 (2000); https://doi.org/10.3987/COM-99-8743
  17. S.M. Colegate, N. Anderton, J. Edgar, C.A. Bourke and R.N. Oram, Suspected Blue Canary Grass (Phalaris coerulescens) Poisoning of Horses, Aust. Vet., 77, 537 (1999); https://doi.org/10.1111/avj.1999.77.8.537
  18. A.A. Kelemen, G. Satala, A.J. Bojarski and G.M. Keseru, Spiro-[pyrrolidine-3,3¢-oxindoles] and Their Indoline Analogues as New 5-HT6 Receptor Chemotypes, Molecules, 22, 2221 (2017); https://doi.org/10.3390/molecules22122221
  19. M.E. Kuehne, D.M. Roland and R. Hafter, Studies in Biomimetic Alkaloid Syntheses. 2. Synthesis of Vincadifformine from Tetrahydro-b-carboline through a Secodine Intermediate, J. Org. Chem., 43, 3705 (1978); https://doi.org/10.1021/jo00413a015
  20. C. Fischer, C. Meyers and E.M. Carreira, Efficient Synthesis of (±)-Horsfiline through the MgI2-Catalyzed Ring-Expansion Reaction of a Spiro[cyclopropane-1,3¢-indol]-2¢-one, Helv. Chim. Acta, 83, 1175 (2000); https://doi.org/10.1002/1522-2675(20000607)83:6<1175::AID-HLCA1175>3.0.CO;2-D
  21. G. Cravotto, G.B. Giovenzana, T. Pilati, M. Sisti and G. Palmisano, Azomethine Ylide Cycloaddition/Reductive Heterocyclization Approach to Oxindole Alkaloids: Asymmetric Synthesis of (-)-Horsfiline, J. Org. Chem., 66, 8447 (2001); https://doi.org/10.1021/jo015854w
  22. N. Selvakumar, A.M. Azhagan, D. Srinivas and G.G. Krishna, A Direct Synthesis of 2-Arylpropenoic Acid Esters having Nitro Groups in the Aromatic Ring: A Short Synthesis of (±)-coerulescine and (±)-Horsfiline, Tetrahedron Lett., 43, 9175 (2002); https://doi.org/10.1016/S0040-4039(02)02267-0
  23. M.-Y. Chang, C.-L. Pai and Y.-H. Kung, Synthesis of (±)-Coerulescine and a Formal Synthesis of (±)-Horsfiline, Tetrahedron Lett., 46, 8463 (2005); https://doi.org/10.1016/j.tetlet.2005.10.015
  24. K. Jones and J. Wilkinson, A Total Synthesis of Horsfiline via Aryl Radical Cyclisation, J. Chem. Soc. Chem. Commun., 1767 (1992); https://doi.org/10.1039/C39920001767
  25. D.E. Lizos and J.A. Murphy, Concise Synthesis Of (±)-horsfiline and (±)-Coerulescine by Tandem Cyclisation of Iodoaryl Alkenyl Azides, Org. Biomol. Chem., 1, 117 (2003); https://doi.org/10.1039/B208114H
  26. J. Cossy, M. Cases and D.G. Pardo, A Convenient Route to Spiro-pyrrolidinyl-oxindole Alkaloids via C-3 Substituted ene-Pyrrolidine Carbamate Radical Cyclization, Tetrahedron Lett., 39, 2331 (1998); https://doi.org/10.1016/S0040-4039(98)00193-2
  27. D. Lizos, R. Tripoli and J.A. Murphy, A Novel and Economical Route to (±)-Horsfiline using an Aryl Iodoazide Tandem Radical Cyclisation Strategy, Chem. Commun., 2732 (2001); https://doi.org/10.1039/b108622g
  28. J.A. Murphy, R. Tripoli, T.A. Khan and U.M. Mali, Novel Phosphorus Radical-Based Routes to Horsfiline, Org. Lett., 7, 3287 (2005); https://doi.org/10.1021/ol051095i
  29. G. Lakshmaiah, T. Kawabata, M. Shang and K. Fuji, Total Synthesis of (-)-Horsfiline via Asymmetric Nitroolefination, J. Org. Chem., 64, 1699 (1999); https://doi.org/10.1021/jo981577q
  30. S. Jaegli J.-P. Vors, L. Neuville, J. Zhu, Total Synthesis of Horsfiline: A Palladium-Catalyzed Domino Heck-Cyanation Strategy, Synlett, 18, 2997 (2009); https://doi.org/10.1055/s-0029-1218004
  31. B.M. Trost and M.K. Brennan, Palladium Asymmetric Allylic Alkylation of Prochiral Nucleophiles: Horsfiline, Org. Lett., 8, 2027 (2006); https://doi.org/10.1021/ol060298j
  32. V.J. Reddy and C.J. Douglas, Highly Enantioselective Intramolecular Cyanoamidation: (+)-Horsfiline, (-)-Coerulescine, and (-)-Esermethole, Org. Lett., 12, 952 (2010); https://doi.org/10.1021/ol902949d
  33. O.R. Suárez-Castillo, M. Meléndez-Rodríguez, Y.M. Contreras-Martínez, A. Alvarez - Hernández, M.S. Morales-Ríos and P. Joseph-Nathan, DMD Mediated Formal Synthesis of (±)-Coerulescine, Nat. Prod. Commun., 4, 797 (2009).
  34. J.E. Thomson, A.F. Kyle, K.B. Ling, S.R. Smith, A.M.Z. Slawin and A.D. Smith, Applications of NHC-Mediated O- to C-Carboxyl Transfer: Synthesis of (±)-N-Benzyl-coerulescine and (±)-Horsfiline, Tetrahedron, 66, 3801 (2010); https://doi.org/10.1016/j.tet.2010.03.047
  35. J.D. White, Y. Li and D.C. Ihle, Tandem Intramolecular Photo-cycloaddition-Retro-Mannich Fragmentation as a Route to Spiro-[pyrrolidine-3,3¢-oxindoles]. Total Synthesis of (±)-Coerulescine, (±)-Horsfiline, (±)-Elacomine, and (±)-6-Deoxyelacomine, J. Org. Chem., 75, 3569 (2010); https://doi.org/10.1021/jo1002714
  36. M. Henary, C. Kanada, L. Rotolo, B. Savino, E.A. Owens and G. Cravotto, Benefits and Applications of Microwave-Assisted Synthesis of Nitrogen Containing Heterocycles in Medicinal Chemistry, RSC Adv., 10, 14170 (2020); https://doi.org/10.1039/D0RA01378A
  37. M. Driowya, A. Saber, H. Marzag, L. Demange, R. Benhida and K. Bougrin, Microwave-Assisted Synthesis of Bioactive Six-Membered Heterocycles and their Fused Analogues, Molecules, 21, 492 (2016); https://doi.org/10.3390/molecules21040492
  38. V. Molteni and D.A. Ellis, Recent Advances in Microwave-Assisted Synthesis of Heterocyclic Compounds, Curr. Org. Synth., 2, 333 (2005); https://doi.org/10.2174/1570179054368518
  39. A. Majumder, R. Gupta and A. Jain, Microwave-Assisted Synthesis of Nitrogen-Containing Heterocycles, Green Chem. Lett. Rev., 6, 151 (2013); https://doi.org/10.1080/17518253.2012.733032
  40. A.R. Katritzky and S.K. Singh, Microwave-Assisted Heterocyclic Synthesis, ARKIVOC, 68 (2003); https://doi.org/10.3998/ark.5550190.0004.d09
  41. A.P. Molchanov, M.M. Efremova, M.A. Kryukova and M.A. Kuznetsov, Selective and Reversible 1,3-Dipolar Cycloaddition of 6-Aryl-1,5-diazabicyclo[3.1.0]hexanes with 1,3-Diphenylprop-2-en-1-ones under Microwave Irradiation, Beilstein J. Org. Chem., 16, 2679 (2020); https://doi.org/10.3762/bjoc.16.218
  42. M. Neuschl, D. Bogdal and M. Potacek, Molecules, 12, 49 (2007); https://doi.org/10.3390/12010049
  43. E.E. Veverkova and S. Toma, Microwave-Assisted 1,3-Dipolar Cycloaddition. Synthesis of Substituted 9-(1,2,3-Triazol-1-yl)acridines, Chem. Pap., 59, 350 (2005).
  44. M. Xia, Microwave Irradiation for the Oxidative 1,3-Dipolar Cycloaddition of Aldehyde Phenylhydrazones and Methyl Acrylate by (Diacetoxy)Iobenzene, J. Chem. Res. (S), 418 (2003); https://doi.org/10.3184/030823403103174353
  45. R.S. Kusurkar and U.D. Kannadkar, 1,3-Dipolar Cycloaddition Reactions Assisted by Microwave Radiation and Gamma Radiation, Synth. Commun., 31, 2235 (2001); https://doi.org/10.1081/SCC-100104820
  46. P.S. Mane, S.G. Shirodkar, B.R Arbad and T.K. Chondhekar, Synthesis and Characterization of Manganese(II), Cobalt(II), Nickel(II), and Copper(II) Complexes of Schiff Base Derivatives of Dehydroacetic Acid, Indian J. Chem., 40, 648 (2001).
  47. N. Raman and S. Parameswari, Designing and Synthesis of Antifungal Active Macrocyclic Ligand and its Complexes Derived from Diethyl-phthalate and Benzidine, Mycobiology, 35, 65 (2007). https://doi.org/10.4489/MYCO.2007.35.2.065