Main Article Content

Abstract

QSAR study of the derivatives of thiadiazole and quinoxaline has been performed for the antiepileptic activity using the topological descriptors viz., molar refractivity, shape index (basic kappa, order 1), shape index (basic kappa, order 2), shape index (basic kappa, order 3), valence connectivity index (order 0, standard), valence connectivity index (order 1, standard) and valence connectivity index (order 2, standard). In the best QSAR model, the descriptors are molar refractivity, shape index (basic kappa, order 1), shape index (basic kappa, order 3) and valence connectivity index (order 0, standard). In this QSAR model, the regression coefficient is 0.872435 and cross-validation coefficient is 0.832189, which indicate that this QSAR model can be used to predict the antiepileptic activity of any compound belonging to this series. QSAR model developed using single descriptor shape index (basic kappa, order 1) or shape index (basic kappa, order 3) or valence connectivity index (order 2, standard) also has good predictive power.

Keywords

QSAR models Thiadiazole Quinoxaline Descriptors Antiepileptic activity Computational chemistry.

Article Details

How to Cite
Kumar Mishra, D., Singh, A., Mishra, S., Singh, P., & Singh, A. (2022). PM3 Method based QSAR Study of the Derivatives of Thiadiazole and Quinoxaline for Antiepileptic Activity using Topological Descriptors. Asian Journal of Organic & Medicinal Chemistry, 7(1), 99–110. https://doi.org/10.14233/ajomc.2022.AJOMC-P370

References

  1. S. Kwon, H. Bae, J. Jo and S. Yoon, Comprehensive Ensemble in QSAR Prediction for Drug Discovery, BMC Bioinformatics, 20, 521 (2019); https://doi.org/10.1186/s12859-019-3135-4
  2. P.P. Singh, F.A. Pasha and H.K. Srivastava, DFT Based Atomic Softness and Its Application in Site Selectivity, QSAR Comb. Sci., 22, 843 (2003); https://doi.org/10.1002/qsar.200330828
  3. F.A. Pasha, H.K. Srivastava and P.P. Singh, Semiempirical QSAR study and Ligand Receptor Interaction of Estrogens, J. Mol. Div., 9, 215 (2005); https://doi.org/10.1007/s11030-005-2711-x
  4. P.P. Singh, F.A. Pasha and H.K. Srivastava, QSAR Study of Estrogens with the Help of PM3-based Descriptors, Int. J. Quan. Chem., 104, 87 (2005); https://doi.org/10.1002/qua.20569
  5. P.P. Singh, F.A. Pasha and H.K. Srivastava, Novel Application of Softness Parameter for Regioselectivity and Reaction Mechanism, Indian J. Chem., 43B, 983 (2004).
  6. P.P. Singh, H.K. Srivastava and F.A. Pasha, DFT-based QSAR study of Testosterone and its Derivatives, Bioorg. Med. Chem., 12, 171 (2004); https://doi.org/10.1016/j.bmc.2003.11.002
  7. B.R. Allen and S.Y. Stanley, An Introduction to QSAR Methodology,
  8. C.S.J. Walpole, R. Wrigglesworth, S. Bevan, E.A. Campbell, A. Dray, I.F. James, K.J. Masdin, M.N. Perkins and J. Winter, Analogs of Capsaicin with Agonist Activity as Novel Analgesic Agents; Structure-Activity Studies. 3. The Hydrophobic Side-Chain "C-region", J. Med. Chem., 36, 2381 (1993); https://doi.org/10.1021/jm00068a016
  9. J.G. Topliss, Utilization of Operational Schemes for Analog Synthesis in Drug Design, J. Med. Chem., 15, 1006 (1972); https://doi.org/10.1021/jm00280a002
  10. Y.C. Martin, A Practitioner’s Perspective of the Role of Quantitative Structure-Activity Analysis in Medicinal Chemistry, J. Med. Chem., 24, 229 (1981); https://doi.org/10.1021/jm00135a001
  11. G.T. John, Quantitative Structure-Activity Relationships of Drugs, Academic Press: New York (1983).
  12. R. Franke, Theoretical Drug Design Methods, Elsevier: Amsterdam, (1984).
  13. H.-H. Hsu, C.-H. Huang and S.-T. Lin, New Data Structure for Computational Molecular Design with Atomic or Fragment Resolution, J. Chem. Inf. Model., 59, 3703 (2019); https://doi.org/10.1021/acs.jcim.9b00478
  14. H.C. Neu, Quinolones Revisited: Where are We? Antimicrob. Newslett., 4, 9 (1987); https://doi.org/10.1016/0738-1751(87)90008-6
  15. P.B. Fernandes, Mode of Action, and in vitro and in vivo Activities of the Fluoroquinolones, J. Clin. Pharmacol., 28, 156 (1987); https://doi.org/10.1002/j.1552-4604.1988.tb05967.x
  16. P.G. Drake and B.I. Posner, Insulin Receptor-Associated Protein Tyrosine Phosphatase(s): Role in Insulin Action, Mol. Cell. Biochem., 182, 79 (1998); https://doi.org/10.1023/A:1006808100755
  17. M.F. White and C.R. Kahn, The Insulin Signaling System, J. Biol. Chem., 269, 1 (1994); https://doi.org/10.1016/S0021-9258(17)42297-6
  18. H. Byon, A.B. Kusari and J. Kusari, Protein-Tyrosine Phosphatase-1B Acts as a Negative Regulator of Insulin Signal Transduction, Mol. Cell. Biochem., 182, 101 (1998); https://doi.org/10.1023/A:1006868409841
  19. F. Ahmad, P.-M. Li, J. Meyerovitch and B.J. Goldstein, Smotic Loading of Neutralizing Antibodies Demonstrates a Role for Protein-tyrosine Phosphatase 1B in Negative Regulation of the Insulin Action Pathway, J. Biol. Chem., 270, 20503 (1995); https://doi.org/10.1074/jbc.270.35.20503
  20. D. Bandyopadhyay, A. Kusari, K.A. Kenner, F. Liu, J. Chernoff, T.A. Gustafson and J. Kusari, Protein-Tyrosine Phosphatase 1B Complexes with the Insulin Receptor in vivo and Is Tyrosine-phosphorylated in the Presence of Insulin, J. Biol. Chem., 272, 1639 (1997); https://doi.org/10.1074/jbc.272.3.1639
  21. J. Kusari, K.A. Kenner, K.I. Suh, D.E. Hill and R.R. Henry, Skeletal Muscle Protein Tyrosine Phosphatase Activity and Tyrosine Phosphatase 1B Protein Content are Associated with Insulin Action and Resistance, J. Clin. Invest., 93, 1156 (1994); https://doi.org/10.1172/JCI117068
  22. J.B. Stanbury, J.B. Wyngaarden and D.S. Fredrickson, The Metabolic Basis of Inherited Disease, McGraw-Hill: New York, p. 182 (1978).
  23. R.G. Parr, R.A. Donnelly, M. Levy and W.E. Palke, Electronegativity: The Density Functional Viewpoint, J. Chem. Phys., 68, 3801 (1978); https://doi.org/10.1063/1.436185
  24. M.C. Flanigan, A. Komornicki and J.W. McIver, Modern Theoretical Chemistry, Plenum Press: New York, vol. 8 (1977).
  25. M.J.S. Dewar and H.S. Rzepa, Ground States of Molecules. 45. MNDO Results for Molecules Containing Beryllium, J. Am. Chem. Soc., 100, 777 (1978); https://doi.org/10.1021/ja00471a020
  26. B. Lee and E.M. Richards, The Interpretation of Protein Structures: Estimation of Static Accessibility, J. Mol. Biol., 55, 379 (1971); https://doi.org/10.1016/0022-2836(71)90324-X
  27. L.B. Kier, Distinguishing Atom Differences in a Molecular Graph Shape Index, Quant. Struct.-Act. Relat., 5, 7 (1986); https://doi.org/10.1002/qsar.19860050103
  28. L.B. Kier, Indexes of Molecular Shape from Chemical Graphs, Med. Res. Rev., 7, 417 (1987); https://doi.org/10.1002/med.2610070404
  29. R.G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press: New York (1989).
  30. J.J.P. Stewart, Optimization of Parameters for Semiempirical Methods I. Method, J. Comput. Chem., 10, 209 (1989); https://doi.org/10.1002/jcc.540100208
  31. Z. Mihalic, D. Veljan, D. Amic, S. Nikolic, D. Plavsic and N. Trinajstic, The Distance Matrix in Chemistry, J. Math. Chem., 11, 223 (1992); https://doi.org/10.1007/BF01164206
  32. H. Haruo, Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons, Bull. Chem. Soc. Jpn., 44, 2332 (1971); https://doi.org/10.1246/bcsj.44.2332
  33. M. Barysz, G. Jashari, R.S. Lall, V. Srivastava and N.K. Trinajstic,Eds.: R.B. King, On the Distance Matrix of Molecules Containing Hetero-atoms; In: Chemical Applications of Topology and Graph Theory, Elsevier: Amsterdam, pp. 222-230 (1983).
  34. M. Randic, Characterization of Molecular Branching, J. Am. Chem. Soc., 97, 6609 (1975); https://doi.org/10.1021/ja00856a001
  35. L.B. Kier, L.H. Hall, W.J. Murray and M. Randic, Molecular Connectivity V: Connectivity Series Concept Applied to Density, J. Pharm. Sci., 65, 1226 (1976); https://doi.org/10.1002/jps.2600650824