Main Article Content

Abstract

The biologically active pyrazole clubbed imino naphthyl derivatives have been designed and synthesized from 1-phenyl-3-methoxy phenyl-1H-pyrazol-4-carboxaldehyde and substituted naphthyl amines via acid catalyzed condensation reaction. All the synthesized compounds were well characterized by different spectroscopic and mass spectral techniques. The in vitro antibacterial, antifungal and antituberculosis studies were carried out. The molecular docking study was also done with the software Arguslab 4.0.1. The studied compounds showed moderate to good biological activities both experimentally and theoretically. Geometry optimization, DNA binding interaction and FMO analysis were also investigated with the help of Gaussian 16 package at B3LYP/6-31G(d,p) level.

Keywords

Pyrazole derivatives Imino naphthyl derivatives Biological activities Molecular docking DNA binding.

Article Details

How to Cite
S, P., Femina, K., & Pradeep, A. (2021). Synthesis, DFT Calculations, DNA Binding and Molecular Docking Studies on Biologically Active N-((3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl)methylene)naphthyl Derivatives. Asian Journal of Organic & Medicinal Chemistry, 6(4), 292–301. https://doi.org/10.14233/ajomc.2021.AJOMC-P351

References

  1. V. Kumar, K. Kaur, G.K. Gupta and A.K. Sharma, Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance, Eur. J. Med. Chem., 69, 735 (2013); https://doi.org/10.1016/j.ejmech.2013.08.053
  2. T. Milad, A. Haniyeh and N. Hamideh, Mild and Efficient Synthesis of 1-(6-Chloroquinoxalin-2-yl)-2-[4-(trifluoromethyl)-2,6-dinitrophenyl]-hydrazine Derivatives by Microwave Irradiation, Chem. Res. Chin. Univ., 30, 405 (2014); https://doi.org/10.1007/s40242-014-3417-3
  3. M.D. Carrión, L.C. Lo’pez Cara, E.V. Camacho, M. Tapias, G. Escames, D. Acuña-Castroviejo, A. Espinosa, M.A. Gallo and A. Entrena, Pyrazoles and Pyrazolines as Neural and Inducible Nitric Oxide Synthase (nNOS and iNOS) Potential Inhibitors (III), Eur. J. Med. Chem., 43, 2579 (2008); https://doi.org/10.1016/j.ejmech.2008.01.014
  4. N. Gökhan-Kelekçi, S. Koyunoglu, S. Yabanoglu, K. Yelekçi, Ö. Özgen, G. Uçar, K. Erol, E. Kendi and A. Yesilada, New Pyrazoline Bearing 4(3H)-Quinazolinone Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation, and Structural Determinants of MAO-A and MAO-B Selectivity, Bioorg. Med. Chem., 17, 675 (2009); https://doi.org/10.1016/j.bmc.2008.11.068
  5. J.V. Faria, P.F. Vegi, A.G.C. Miguita, M.S. dos Santos, N. Boechat and A.M.R. Bernardino, Recently Reported Biological Activities of Pyrazole Compounds, Bioorg. Med. Chem., 25, 5891 (2017); https://doi.org/10.1016/j.bmc.2017.09.035
  6. M. Abid, A.R. Bhat, F. Athar and A. Azam, Synthesis, Spectral Studies and Antiamoebic Activity of New 1-N-Substituted Thiocarbamoyl-3-Phenyl-2-Pyrazolines, Eur. J. Med. Chem., 44, 417 (2009); https://doi.org/10.1016/j.ejmech.2007.10.032
  7. A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Regioselective Synthesis and Antitumor Screening of Some Novel N-Phenylpyrazole Derivatives, Bioorg. Med. Chem., 16, 881 (2008a); https://doi.org/10.1016/j.bmc.2007.10.015
  8. S.R. Shih, T.Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M. Wu, J.-Y. Yeh, Y.-S. Chao, J.T.A. Hsu, H.-P. Hsieh and J.-T. Horng, Pyrazole Compound BPR1P0034 with Potent and Selective Anti-influenza Virus Activity, J. Biomed. Sci., 17, 13 (2010); https://doi.org/10.1186/1423-0127-17-13
  9. H. Naito, S. Ohsuki, M. Sugimori, R. Atsumi, M. Minami, Y. Nakamura, M. Ishii, K. Hirotani, E. Kumazawa and A. Ejima, Synthesis and Antitumor Activity of Novel Pyrimidinyl Pyrazole Derivatives. II. Optimization of the Phenylpiperazine Moiety of 1-[5-Methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes, Chem. Pharm. Bull. (Tokyo), 50, 453 (2002); https://doi.org/10.1248/cpb.50.453
  10. M. Abdel-Aziz, G.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
  11. A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Synthesis of New N-Phenylpyrazole Derivatives with Potent Antimicrobial Activity, Bioorg. Med. Chem., 16, 4569 (2008); https://doi.org/10.1016/j.bmc.2008.02.043
  12. K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, F.A. AlAizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
  13. E.G. Chalina and L. Chakarova, Synthesis, Hypotensive and Anti-arrhythmic Activities of 3-Alkyl-1-(2-hydroxy-5,8-dimethoxy-1,2,3,4-tetrahydro-3-naphthalenyl)ureas or Thioureas and their Guanidine Analogues, Eur. J. Med. Chem., 33, 975 (1998); https://doi.org/10.1016/S0223-5234(99)80022-1
  14. V. Michon, C.H. du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage and L. Berthon, Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-Aminopyrazole N-Benzoyl Derivatives, Eur. J. Med. Chem., 30, 147 (1995); https://doi.org/10.1016/0223-5234(96)88220-1
  15. R.K. Indrasena, C. Aruna, M. Manisha, K. Srihari, B.K. Sudhakar, V. Vijayakumar, S. Sarveswari, R. Priya, A. Amrita and R. Siva, Synthesis, DNA Binding and in-vitro Cytotoxicity Studies on Novel bis-Pyrazoles, J. Photochem. Photobiol. B, 168, 89 (2017); https://doi.org/10.1016/j.jphotobiol.2017.02.003
  16. N.K. Terrett, A.S. Bell, D. Brown and P. Ellis, Sildenafil (VIAGRATM), a Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X
  17. G.S. Has san, S.M. Abou-Seri, G. Kamel and M.M. Ali, Celecoxib Analogs Bearing Benzofuran Moiety as Cyclooxygenase-2 Inhibitors: Design, Synthesis and Evaluation as Potential Anti-inflammatory Agents, Eur. J. Med. Chem., 76, 482 (2014); https://doi.org/10.1016/j.ejmech.2014.02.033
  18. J. Ancel, L. El Kaïm, A. Gadras, L. Grimaud and N. Jana, Studies Towards the Synthesis of Fipronil® Analogues: Improved Decarboxy-lation of a-Hydrazonoacid Derivatives, Tetrahedron Lett., 43, 8319 (2002); https://doi.org/10.1016/S0040-4039(02)01977-9
  19. M.J. Alam, O. Alam, P. Alam and M.J. Naim, A Review on Pyrazole Chemical Entity and Biological Activity, Int. J. Pharm. Sci. Res., 6, 1433 (2015).
  20. H.A. Saad, N.A. Osman and A.H. Moustafa, Synthesis and Analgesic Activity of Some New Pyrazoles and Triazoles Bearing a 6,8-Dibromo-2-methylquinazoline Moiety, Molecules, 16, 10187 (2011); https://doi.org/10.3390/molecules161210187
  21. A. Balbi, M. Anzaldi, M. Mazzei, M. Miele, M. Bertolotto, L. Ottonello and F. Dallegri, Synthesis and Biological Evaluation of Novel Heterocyclic Ionone-Like Derivatives as Anti-Inflammatory Agents, Bioorg. Med. Chem., 14, 5152 (2006); https://doi.org/10.1016/j.bmc.2006.04.007
  22. B.V Kendre, M.G. Landge, W.N. Jadhav and S.R. Bhusare, Synthesis and Bioactivities of Some New 1H-Pyrazole Derivatives Containing an Aryl Sulfonate Moiety, Chin. Chem. Lett., 24, 325 (2013); https://doi.org/10.1016/j.cclet.2013.02.016
  23. A. Pai, D.V. Kumar and B.S. Jayashree, Synthesis, Characterization, Antibacterial and Anticancer Evaluation of Some Novel Flavone-3-ols, Asian J. Pharm. Sci., 11, 187 (2016); https://doi.org/10.1016/j.ajps.2015.11.044
  24. D. Ravi, S. Sarkar, S. Purvey, F. Passero, A. Beheshti, Y. Chen, M. Mokhtar, K. David, T. Konry and A.M. Evens, Interaction Kinetics with Transcriptomic and Secretory Responses of CD19-CAR Natural Killer-Cell Therapy in CD20 Resistant Non-Hodgkin Lymphoma, Leukemia, 34, 1291 (2020); https://doi.org/10.1038/s41375-019-0663-x
  25. M.M. de Oliveira Cabral, P.M. Mendonça, C.M.S. Gomes, J.M. Barbosa-Filho, C.S. Dias, M.J. Soares and M.M. de Carvalho Queiroz, Biological Activity of Yangambin on the Postembryonic Development of Chrysomya megacephala (Diptera: Calliphoridae), J. Med. Entomol., 44, 249 (2007); https://doi.org/10.1093/jmedent/44.2.249
  26. G. Kapoor, S. Saigal and A. Elongavan, Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians, J. Anaesthesiol. Clin. Pharmacol., 33, 300 (2017); https://doi.org/10.4103/joacp.JOACP_349_15
  27. C. Shang, Y. Hou, T. Meng, M. Shi and G. Cui, The Anticancer Activity of Indazole Compounds: A Mini Review, Curr. Top. Med. Chem., 21, 363 (2021); https://doi.org/10.2174/1568026620999201124154231
  28. R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Molecular Flexibility in ab initio Drug Docking to DNA: Binding-Site and Binding-Mode Transitions in All-Atom Monte Carlo Simulations, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008
  29. M. Baginski, F. Fogolari and J.M. Briggs, Electrostatic and Non-Electrostatic Contributions to the Binding Free Energies of Anthracycline Antibiotics to DNA, J. Mol. Biol., 274, 253 (1997); https://doi.org/10.1006/jmbi.1997.1399
  30. E.M. Proudfoot, J.P. Mackay and P. Karuso, Probing Site Specificity of DNA Binding Metallointercalators by NMR Spectroscopy and Molecular Modeling, Biochemistry, 40, 4867 (2001); https://doi.org/10.1021/bi001655f
  31. T. Tedeschi, S. Sforza, A. Dossena, R. Corradini and R. Marchelli, Lysine-Based Peptide Nucleic Acids (PNAs) with Strong Chiral Constraint: Control of Helix Handedness and DNA Binding by Chirality, Chirality, 17, 196 (2005); https://doi.org/10.1002/chir.20128
  32. G.M. Hill, D.M. Moriarity and W.N. Setzer, Attenuation of Cytotoxic Natural Product DNA Intercalating Agents by Caffeine, Sci. Pharm., 79, 729 (2011); https://doi.org/10.3797/scipharm.1107-19
  33. J. Lakshmipraba, S. Arunachalam, R.V. Solomon and P. Venuvanalingam, Synthesis, DNA Binding and Docking Studies of Copper(II) Complexes Containing Modified Phenanthroline Ligands, J. Coord. Chem., 68, 1374 (2015); https://doi.org/10.1080/00958972.2015.1014349