Main Article Content
Abstract
The biologically active pyrazole clubbed imino naphthyl derivatives have been designed and synthesized from 1-phenyl-3-methoxy phenyl-1H-pyrazol-4-carboxaldehyde and substituted naphthyl amines via acid catalyzed condensation reaction. All the synthesized compounds were well characterized by different spectroscopic and mass spectral techniques. The in vitro antibacterial, antifungal and antituberculosis studies were carried out. The molecular docking study was also done with the software Arguslab 4.0.1. The studied compounds showed moderate to good biological activities both experimentally and theoretically. Geometry optimization, DNA binding interaction and FMO analysis were also investigated with the help of Gaussian 16 package at B3LYP/6-31G(d,p) level.
Keywords
Article Details
Copyright (c) 2021 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- V. Kumar, K. Kaur, G.K. Gupta and A.K. Sharma, Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance, Eur. J. Med. Chem., 69, 735 (2013); https://doi.org/10.1016/j.ejmech.2013.08.053
- T. Milad, A. Haniyeh and N. Hamideh, Mild and Efficient Synthesis of 1-(6-Chloroquinoxalin-2-yl)-2-[4-(trifluoromethyl)-2,6-dinitrophenyl]-hydrazine Derivatives by Microwave Irradiation, Chem. Res. Chin. Univ., 30, 405 (2014); https://doi.org/10.1007/s40242-014-3417-3
- M.D. Carrión, L.C. Lo’pez Cara, E.V. Camacho, M. Tapias, G. Escames, D. Acuña-Castroviejo, A. Espinosa, M.A. Gallo and A. Entrena, Pyrazoles and Pyrazolines as Neural and Inducible Nitric Oxide Synthase (nNOS and iNOS) Potential Inhibitors (III), Eur. J. Med. Chem., 43, 2579 (2008); https://doi.org/10.1016/j.ejmech.2008.01.014
- N. Gökhan-Kelekçi, S. Koyunoglu, S. Yabanoglu, K. Yelekçi, Ö. Özgen, G. Uçar, K. Erol, E. Kendi and A. Yesilada, New Pyrazoline Bearing 4(3H)-Quinazolinone Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation, and Structural Determinants of MAO-A and MAO-B Selectivity, Bioorg. Med. Chem., 17, 675 (2009); https://doi.org/10.1016/j.bmc.2008.11.068
- J.V. Faria, P.F. Vegi, A.G.C. Miguita, M.S. dos Santos, N. Boechat and A.M.R. Bernardino, Recently Reported Biological Activities of Pyrazole Compounds, Bioorg. Med. Chem., 25, 5891 (2017); https://doi.org/10.1016/j.bmc.2017.09.035
- M. Abid, A.R. Bhat, F. Athar and A. Azam, Synthesis, Spectral Studies and Antiamoebic Activity of New 1-N-Substituted Thiocarbamoyl-3-Phenyl-2-Pyrazolines, Eur. J. Med. Chem., 44, 417 (2009); https://doi.org/10.1016/j.ejmech.2007.10.032
- A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Regioselective Synthesis and Antitumor Screening of Some Novel N-Phenylpyrazole Derivatives, Bioorg. Med. Chem., 16, 881 (2008a); https://doi.org/10.1016/j.bmc.2007.10.015
- S.R. Shih, T.Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M. Wu, J.-Y. Yeh, Y.-S. Chao, J.T.A. Hsu, H.-P. Hsieh and J.-T. Horng, Pyrazole Compound BPR1P0034 with Potent and Selective Anti-influenza Virus Activity, J. Biomed. Sci., 17, 13 (2010); https://doi.org/10.1186/1423-0127-17-13
- H. Naito, S. Ohsuki, M. Sugimori, R. Atsumi, M. Minami, Y. Nakamura, M. Ishii, K. Hirotani, E. Kumazawa and A. Ejima, Synthesis and Antitumor Activity of Novel Pyrimidinyl Pyrazole Derivatives. II. Optimization of the Phenylpiperazine Moiety of 1-[5-Methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes, Chem. Pharm. Bull. (Tokyo), 50, 453 (2002); https://doi.org/10.1248/cpb.50.453
- M. Abdel-Aziz, G.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
- A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Synthesis of New N-Phenylpyrazole Derivatives with Potent Antimicrobial Activity, Bioorg. Med. Chem., 16, 4569 (2008); https://doi.org/10.1016/j.bmc.2008.02.043
- K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, F.A. AlAizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
- E.G. Chalina and L. Chakarova, Synthesis, Hypotensive and Anti-arrhythmic Activities of 3-Alkyl-1-(2-hydroxy-5,8-dimethoxy-1,2,3,4-tetrahydro-3-naphthalenyl)ureas or Thioureas and their Guanidine Analogues, Eur. J. Med. Chem., 33, 975 (1998); https://doi.org/10.1016/S0223-5234(99)80022-1
- V. Michon, C.H. du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage and L. Berthon, Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-Aminopyrazole N-Benzoyl Derivatives, Eur. J. Med. Chem., 30, 147 (1995); https://doi.org/10.1016/0223-5234(96)88220-1
- R.K. Indrasena, C. Aruna, M. Manisha, K. Srihari, B.K. Sudhakar, V. Vijayakumar, S. Sarveswari, R. Priya, A. Amrita and R. Siva, Synthesis, DNA Binding and in-vitro Cytotoxicity Studies on Novel bis-Pyrazoles, J. Photochem. Photobiol. B, 168, 89 (2017); https://doi.org/10.1016/j.jphotobiol.2017.02.003
- N.K. Terrett, A.S. Bell, D. Brown and P. Ellis, Sildenafil (VIAGRATM), a Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X
- G.S. Has san, S.M. Abou-Seri, G. Kamel and M.M. Ali, Celecoxib Analogs Bearing Benzofuran Moiety as Cyclooxygenase-2 Inhibitors: Design, Synthesis and Evaluation as Potential Anti-inflammatory Agents, Eur. J. Med. Chem., 76, 482 (2014); https://doi.org/10.1016/j.ejmech.2014.02.033
- J. Ancel, L. El Kaïm, A. Gadras, L. Grimaud and N. Jana, Studies Towards the Synthesis of Fipronil® Analogues: Improved Decarboxy-lation of a-Hydrazonoacid Derivatives, Tetrahedron Lett., 43, 8319 (2002); https://doi.org/10.1016/S0040-4039(02)01977-9
- M.J. Alam, O. Alam, P. Alam and M.J. Naim, A Review on Pyrazole Chemical Entity and Biological Activity, Int. J. Pharm. Sci. Res., 6, 1433 (2015).
- H.A. Saad, N.A. Osman and A.H. Moustafa, Synthesis and Analgesic Activity of Some New Pyrazoles and Triazoles Bearing a 6,8-Dibromo-2-methylquinazoline Moiety, Molecules, 16, 10187 (2011); https://doi.org/10.3390/molecules161210187
- A. Balbi, M. Anzaldi, M. Mazzei, M. Miele, M. Bertolotto, L. Ottonello and F. Dallegri, Synthesis and Biological Evaluation of Novel Heterocyclic Ionone-Like Derivatives as Anti-Inflammatory Agents, Bioorg. Med. Chem., 14, 5152 (2006); https://doi.org/10.1016/j.bmc.2006.04.007
- B.V Kendre, M.G. Landge, W.N. Jadhav and S.R. Bhusare, Synthesis and Bioactivities of Some New 1H-Pyrazole Derivatives Containing an Aryl Sulfonate Moiety, Chin. Chem. Lett., 24, 325 (2013); https://doi.org/10.1016/j.cclet.2013.02.016
- A. Pai, D.V. Kumar and B.S. Jayashree, Synthesis, Characterization, Antibacterial and Anticancer Evaluation of Some Novel Flavone-3-ols, Asian J. Pharm. Sci., 11, 187 (2016); https://doi.org/10.1016/j.ajps.2015.11.044
- D. Ravi, S. Sarkar, S. Purvey, F. Passero, A. Beheshti, Y. Chen, M. Mokhtar, K. David, T. Konry and A.M. Evens, Interaction Kinetics with Transcriptomic and Secretory Responses of CD19-CAR Natural Killer-Cell Therapy in CD20 Resistant Non-Hodgkin Lymphoma, Leukemia, 34, 1291 (2020); https://doi.org/10.1038/s41375-019-0663-x
- M.M. de Oliveira Cabral, P.M. Mendonça, C.M.S. Gomes, J.M. Barbosa-Filho, C.S. Dias, M.J. Soares and M.M. de Carvalho Queiroz, Biological Activity of Yangambin on the Postembryonic Development of Chrysomya megacephala (Diptera: Calliphoridae), J. Med. Entomol., 44, 249 (2007); https://doi.org/10.1093/jmedent/44.2.249
- G. Kapoor, S. Saigal and A. Elongavan, Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians, J. Anaesthesiol. Clin. Pharmacol., 33, 300 (2017); https://doi.org/10.4103/joacp.JOACP_349_15
- C. Shang, Y. Hou, T. Meng, M. Shi and G. Cui, The Anticancer Activity of Indazole Compounds: A Mini Review, Curr. Top. Med. Chem., 21, 363 (2021); https://doi.org/10.2174/1568026620999201124154231
- R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Molecular Flexibility in ab initio Drug Docking to DNA: Binding-Site and Binding-Mode Transitions in All-Atom Monte Carlo Simulations, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008
- M. Baginski, F. Fogolari and J.M. Briggs, Electrostatic and Non-Electrostatic Contributions to the Binding Free Energies of Anthracycline Antibiotics to DNA, J. Mol. Biol., 274, 253 (1997); https://doi.org/10.1006/jmbi.1997.1399
- E.M. Proudfoot, J.P. Mackay and P. Karuso, Probing Site Specificity of DNA Binding Metallointercalators by NMR Spectroscopy and Molecular Modeling, Biochemistry, 40, 4867 (2001); https://doi.org/10.1021/bi001655f
- T. Tedeschi, S. Sforza, A. Dossena, R. Corradini and R. Marchelli, Lysine-Based Peptide Nucleic Acids (PNAs) with Strong Chiral Constraint: Control of Helix Handedness and DNA Binding by Chirality, Chirality, 17, 196 (2005); https://doi.org/10.1002/chir.20128
- G.M. Hill, D.M. Moriarity and W.N. Setzer, Attenuation of Cytotoxic Natural Product DNA Intercalating Agents by Caffeine, Sci. Pharm., 79, 729 (2011); https://doi.org/10.3797/scipharm.1107-19
- J. Lakshmipraba, S. Arunachalam, R.V. Solomon and P. Venuvanalingam, Synthesis, DNA Binding and Docking Studies of Copper(II) Complexes Containing Modified Phenanthroline Ligands, J. Coord. Chem., 68, 1374 (2015); https://doi.org/10.1080/00958972.2015.1014349
References
V. Kumar, K. Kaur, G.K. Gupta and A.K. Sharma, Pyrazole Containing Natural Products: Synthetic Preview and Biological Significance, Eur. J. Med. Chem., 69, 735 (2013); https://doi.org/10.1016/j.ejmech.2013.08.053
T. Milad, A. Haniyeh and N. Hamideh, Mild and Efficient Synthesis of 1-(6-Chloroquinoxalin-2-yl)-2-[4-(trifluoromethyl)-2,6-dinitrophenyl]-hydrazine Derivatives by Microwave Irradiation, Chem. Res. Chin. Univ., 30, 405 (2014); https://doi.org/10.1007/s40242-014-3417-3
M.D. Carrión, L.C. Lo’pez Cara, E.V. Camacho, M. Tapias, G. Escames, D. Acuña-Castroviejo, A. Espinosa, M.A. Gallo and A. Entrena, Pyrazoles and Pyrazolines as Neural and Inducible Nitric Oxide Synthase (nNOS and iNOS) Potential Inhibitors (III), Eur. J. Med. Chem., 43, 2579 (2008); https://doi.org/10.1016/j.ejmech.2008.01.014
N. Gökhan-Kelekçi, S. Koyunoglu, S. Yabanoglu, K. Yelekçi, Ö. Özgen, G. Uçar, K. Erol, E. Kendi and A. Yesilada, New Pyrazoline Bearing 4(3H)-Quinazolinone Inhibitors of Monoamine Oxidase: Synthesis, Biological Evaluation, and Structural Determinants of MAO-A and MAO-B Selectivity, Bioorg. Med. Chem., 17, 675 (2009); https://doi.org/10.1016/j.bmc.2008.11.068
J.V. Faria, P.F. Vegi, A.G.C. Miguita, M.S. dos Santos, N. Boechat and A.M.R. Bernardino, Recently Reported Biological Activities of Pyrazole Compounds, Bioorg. Med. Chem., 25, 5891 (2017); https://doi.org/10.1016/j.bmc.2017.09.035
M. Abid, A.R. Bhat, F. Athar and A. Azam, Synthesis, Spectral Studies and Antiamoebic Activity of New 1-N-Substituted Thiocarbamoyl-3-Phenyl-2-Pyrazolines, Eur. J. Med. Chem., 44, 417 (2009); https://doi.org/10.1016/j.ejmech.2007.10.032
A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Regioselective Synthesis and Antitumor Screening of Some Novel N-Phenylpyrazole Derivatives, Bioorg. Med. Chem., 16, 881 (2008a); https://doi.org/10.1016/j.bmc.2007.10.015
S.R. Shih, T.Y. Chu, G.R. Reddy, S.-N. Tseng, H.-L. Chen, W.-F. Tang, M. Wu, J.-Y. Yeh, Y.-S. Chao, J.T.A. Hsu, H.-P. Hsieh and J.-T. Horng, Pyrazole Compound BPR1P0034 with Potent and Selective Anti-influenza Virus Activity, J. Biomed. Sci., 17, 13 (2010); https://doi.org/10.1186/1423-0127-17-13
H. Naito, S. Ohsuki, M. Sugimori, R. Atsumi, M. Minami, Y. Nakamura, M. Ishii, K. Hirotani, E. Kumazawa and A. Ejima, Synthesis and Antitumor Activity of Novel Pyrimidinyl Pyrazole Derivatives. II. Optimization of the Phenylpiperazine Moiety of 1-[5-Methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-propenes, Chem. Pharm. Bull. (Tokyo), 50, 453 (2002); https://doi.org/10.1248/cpb.50.453
M. Abdel-Aziz, G.A. Abuo-Rahma and A.A. Hassan, Synthesis of Novel Pyrazole Derivatives and Evaluation of their Antidepressant and Anticonvulsant Activities, Eur. J. Med. Chem., 44, 3480 (2009); https://doi.org/10.1016/j.ejmech.2009.01.032
A.M. Farag, A.S. Mayhoub, S.E. Barakat and A.H. Bayomi, Synthesis of New N-Phenylpyrazole Derivatives with Potent Antimicrobial Activity, Bioorg. Med. Chem., 16, 4569 (2008); https://doi.org/10.1016/j.bmc.2008.02.043
K. Karrouchi, S. Radi, Y. Ramli, J. Taoufik, Y.N. Mabkhot, F.A. AlAizari and M. Ansar, Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review, Molecules, 23, 134 (2018); https://doi.org/10.3390/molecules23010134
E.G. Chalina and L. Chakarova, Synthesis, Hypotensive and Anti-arrhythmic Activities of 3-Alkyl-1-(2-hydroxy-5,8-dimethoxy-1,2,3,4-tetrahydro-3-naphthalenyl)ureas or Thioureas and their Guanidine Analogues, Eur. J. Med. Chem., 33, 975 (1998); https://doi.org/10.1016/S0223-5234(99)80022-1
V. Michon, C.H. du Penhoat, F. Tombret, J.M. Gillardin, F. Lepage and L. Berthon, Preparation, Structural Analysis and Anticonvulsant Activity of 3- and 5-Aminopyrazole N-Benzoyl Derivatives, Eur. J. Med. Chem., 30, 147 (1995); https://doi.org/10.1016/0223-5234(96)88220-1
R.K. Indrasena, C. Aruna, M. Manisha, K. Srihari, B.K. Sudhakar, V. Vijayakumar, S. Sarveswari, R. Priya, A. Amrita and R. Siva, Synthesis, DNA Binding and in-vitro Cytotoxicity Studies on Novel bis-Pyrazoles, J. Photochem. Photobiol. B, 168, 89 (2017); https://doi.org/10.1016/j.jphotobiol.2017.02.003
N.K. Terrett, A.S. Bell, D. Brown and P. Ellis, Sildenafil (VIAGRATM), a Potent and Selective Inhibitor of Type 5 cGMP Phosphodiesterase with Utility for the Treatment of Male Erectile Dysfunction, Bioorg. Med. Chem. Lett., 6, 1819 (1996); https://doi.org/10.1016/0960-894X(96)00323-X
G.S. Has san, S.M. Abou-Seri, G. Kamel and M.M. Ali, Celecoxib Analogs Bearing Benzofuran Moiety as Cyclooxygenase-2 Inhibitors: Design, Synthesis and Evaluation as Potential Anti-inflammatory Agents, Eur. J. Med. Chem., 76, 482 (2014); https://doi.org/10.1016/j.ejmech.2014.02.033
J. Ancel, L. El Kaïm, A. Gadras, L. Grimaud and N. Jana, Studies Towards the Synthesis of Fipronil® Analogues: Improved Decarboxy-lation of a-Hydrazonoacid Derivatives, Tetrahedron Lett., 43, 8319 (2002); https://doi.org/10.1016/S0040-4039(02)01977-9
M.J. Alam, O. Alam, P. Alam and M.J. Naim, A Review on Pyrazole Chemical Entity and Biological Activity, Int. J. Pharm. Sci. Res., 6, 1433 (2015).
H.A. Saad, N.A. Osman and A.H. Moustafa, Synthesis and Analgesic Activity of Some New Pyrazoles and Triazoles Bearing a 6,8-Dibromo-2-methylquinazoline Moiety, Molecules, 16, 10187 (2011); https://doi.org/10.3390/molecules161210187
A. Balbi, M. Anzaldi, M. Mazzei, M. Miele, M. Bertolotto, L. Ottonello and F. Dallegri, Synthesis and Biological Evaluation of Novel Heterocyclic Ionone-Like Derivatives as Anti-Inflammatory Agents, Bioorg. Med. Chem., 14, 5152 (2006); https://doi.org/10.1016/j.bmc.2006.04.007
B.V Kendre, M.G. Landge, W.N. Jadhav and S.R. Bhusare, Synthesis and Bioactivities of Some New 1H-Pyrazole Derivatives Containing an Aryl Sulfonate Moiety, Chin. Chem. Lett., 24, 325 (2013); https://doi.org/10.1016/j.cclet.2013.02.016
A. Pai, D.V. Kumar and B.S. Jayashree, Synthesis, Characterization, Antibacterial and Anticancer Evaluation of Some Novel Flavone-3-ols, Asian J. Pharm. Sci., 11, 187 (2016); https://doi.org/10.1016/j.ajps.2015.11.044
D. Ravi, S. Sarkar, S. Purvey, F. Passero, A. Beheshti, Y. Chen, M. Mokhtar, K. David, T. Konry and A.M. Evens, Interaction Kinetics with Transcriptomic and Secretory Responses of CD19-CAR Natural Killer-Cell Therapy in CD20 Resistant Non-Hodgkin Lymphoma, Leukemia, 34, 1291 (2020); https://doi.org/10.1038/s41375-019-0663-x
M.M. de Oliveira Cabral, P.M. Mendonça, C.M.S. Gomes, J.M. Barbosa-Filho, C.S. Dias, M.J. Soares and M.M. de Carvalho Queiroz, Biological Activity of Yangambin on the Postembryonic Development of Chrysomya megacephala (Diptera: Calliphoridae), J. Med. Entomol., 44, 249 (2007); https://doi.org/10.1093/jmedent/44.2.249
G. Kapoor, S. Saigal and A. Elongavan, Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians, J. Anaesthesiol. Clin. Pharmacol., 33, 300 (2017); https://doi.org/10.4103/joacp.JOACP_349_15
C. Shang, Y. Hou, T. Meng, M. Shi and G. Cui, The Anticancer Activity of Indazole Compounds: A Mini Review, Curr. Top. Med. Chem., 21, 363 (2021); https://doi.org/10.2174/1568026620999201124154231
R. Rohs, I. Bloch, H. Sklenar and Z. Shakked, Molecular Flexibility in ab initio Drug Docking to DNA: Binding-Site and Binding-Mode Transitions in All-Atom Monte Carlo Simulations, Nucleic Acids Res., 33, 7048 (2005); https://doi.org/10.1093/nar/gki1008
M. Baginski, F. Fogolari and J.M. Briggs, Electrostatic and Non-Electrostatic Contributions to the Binding Free Energies of Anthracycline Antibiotics to DNA, J. Mol. Biol., 274, 253 (1997); https://doi.org/10.1006/jmbi.1997.1399
E.M. Proudfoot, J.P. Mackay and P. Karuso, Probing Site Specificity of DNA Binding Metallointercalators by NMR Spectroscopy and Molecular Modeling, Biochemistry, 40, 4867 (2001); https://doi.org/10.1021/bi001655f
T. Tedeschi, S. Sforza, A. Dossena, R. Corradini and R. Marchelli, Lysine-Based Peptide Nucleic Acids (PNAs) with Strong Chiral Constraint: Control of Helix Handedness and DNA Binding by Chirality, Chirality, 17, 196 (2005); https://doi.org/10.1002/chir.20128
G.M. Hill, D.M. Moriarity and W.N. Setzer, Attenuation of Cytotoxic Natural Product DNA Intercalating Agents by Caffeine, Sci. Pharm., 79, 729 (2011); https://doi.org/10.3797/scipharm.1107-19
J. Lakshmipraba, S. Arunachalam, R.V. Solomon and P. Venuvanalingam, Synthesis, DNA Binding and Docking Studies of Copper(II) Complexes Containing Modified Phenanthroline Ligands, J. Coord. Chem., 68, 1374 (2015); https://doi.org/10.1080/00958972.2015.1014349