Main Article Content
Abstract
Molecular docking is the identification of ligand’s correct binding geometry i.e. pose in the binding site and estimation of its binding affinity for rational design of drug molecule. The current study endeavored the high throughput in silico screening of 56 derivatives of dihydropyridazin-3(2H)-one docked with human cytosolic branched chain amino transferase using PyRx-virtual screening tool. Out of 56 compounds, almost all the test compounds showed very good binding affinity score. Gabapentin was used as standard drug which shows binding affinity of -6.2. On the basis of H-bond interactions, compounds 3, 9, 11, 25, 26, 31, 34, 39, 47, 48, 51, 54, 56 were found to be potent outcome for anticonvulsant activity. Compounds 11, 25, 39, 56 showed excellent H-bond interactions with protein active site, Among which compound 11 showed the outstanding interactions with acceptable bond length 2.34, 2.57, 2.62, 3.03 Å.
Keywords
Article Details
Copyright (c) 2021 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- N. Berdigaliyev and M. Aljofan, An Overview of Drug Discovery and Development, Future Med. Chem., 12, 939 (2020); https://doi.org/10.4155/fmc-2019-0307
- S. Ekins, J. Mestres and B. Testa, In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling, Br. J. Pharmacol., 152, 9 (2007); https://doi.org/10.1038/sj.bjp.0707305
- A. Sethi, K. Joshi, K. Sasikala and M. Alvala, Eds. V. Gaitonde, P. Karmakar and A. Trivedi, Molecular Docking in Modern Drug Discovery: Principles and Recent Applications, Drug Discovery and Development - New Advances, IntechOpen (2019); https://doi.org/10.5772/intechopen.85991
- X.-Y. Meng, H.-X. Zhang, M. Mezei and M. Cui, Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, Curr. Comput. Aided-Drug Des., 7, 146 (2011); https://doi.org/10.2174/157340911795677602
- L. Ferreira, R. dos Santos, G. Oliva and A. Andricopulo, Molecular Docking and Structure-Based Drug Design Strategies, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
- G.-F. Yang and X. Huang, Development of Quantitative Structure-Activity Relationships and Its Application in Rational Drug Design, Curr. Pharm. Des., 12, 4601 (2006); https://doi.org/10.2174/138161206779010431
- A. Tripathi and V.A. Bankaitis, Molecular Docking: From Lock and Key to Combination Lock, J. Mol. Med. Clin. Appl., 2, 4 (2018); https://doi.org/10.16966/2575-0305.106
- D.-A. Silva, G.R. Bowman, A. Sosa-Peinado and X. Huang, A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein, PLOS Comput. Biol., 7, e1002054 (2011); https://doi.org/10.1371/journal.pcbi.1002054
- D.M. Lorber and B.K. Shoichet, Flexible Ligand Docking using Conformational Ensembles, Protein Sci., 7, 938 (1998); https://doi.org/10.1002/pro.5560070411
- S. Agarwal and R. Mehrotra, An Overview of Molecular Docking, JSM Chem., 1, 5 (2016).
- P.J. Jones, E.C. Merrick, T.W. Batts, N.J. Hargus, Y. Wang, J.P. Stables, E.H. Bertram, M.L. Brown and M.K. Patel, Modulation of Sodium Channel Inactivation Gating by a Novel Lactam: Implications for Seizure Suppression in Chronic Limbic Epilepsy, J. Pharmacol. Exp. Ther., 328, 201 (2009); https://doi.org/10.1124/jpet.108.144709
- M. Iman, A. Saadabadi, A. Davood, H. Shafaroodi, A. Nikbakht, A. Ansari and M. Abedin, Docking, Synthesis and Anticonvulsant Activity of N-Substituted Isoindoline-1,3-dione, Iran. J. Pharm. Res., 16, 586 (2017).
- C.A. Granbichler, G. Zimmermann, W. Oberaigner, G. Kuchukhidze, J.-P. Ndayisaba, A. Taylor, G. Luef, A.C. Bathke and E. Trinka, Potential Years Lost and Life Expectancy in Adults with Newly Diagnosed Epilepsy, Epilepsia, 58, 1939 (2017); https://doi.org/10.1111/epi.13902
- G. Gururaj, P. Satishchandra and S. Amudhan, Epilepsy in India I: Epidemiology and Public Health, Ann. Indian Acad. Neurol., 18, 263 (2015); https://doi.org/10.4103/0972-2327.160093
- A.K. Ngugi, C. Bottomley, I. Kleinschmidt, J.W. Sander and C.R. Newton, Estimation of the Burden of Active and Life-Time Epilepsy: A Meta-Analytic Approach, Epilepsia, 51, 883 (2010); https://doi.org/10.1111/j.1528-1167.2009.02481.x
- S. Engelborghs, R. D’Hooge and P.P. De Deyn, Pathophysiology of Epilepsy, Acta Neurol. Belg., 100, 201 (2000).
- P.A. March, Seizures: Classification, Etiologies, and Pathophysiology, Clin. Tech. Small Anim. Pract., 13, 119 (1998); https://doi.org/10.1016/S1096-2867(98)80033-9
- T.V. Kodankandath, D. Theodore and D. Samanta, Generalized Tonic-Clonic Seizure, StatPearls Publishing: Treasure Island (FL) (2021).
- A. Singh, Lakshmayya and M. Asif, Analgesic and Anti-Inflammatory Activities of Several 4-Substituted-6-(3¢-nitrophenyl)pyridazin-(2H)-3-one Derivatives, Braz. J. Pharm. Sci., 49, 903 (2013); https://doi.org/10.1590/S1984-82502013000400030
- M. Asif and A. Singh, Anticonvulsant Activities of 4-Benzylidene-6-(4-methyl-phenyl)-4,5-dihydropyridazin-(2H)-ones and 4-Benzylidene-6-(4-chloro-phenyl)-4,5-dihydropyridazin-(2H)-ones, Open Pharm. Sci. J., 3, 203 (2016); https://doi.org/10.2174/1874844901603010196
- M. Asif, A Mini Review on Biological Activities of Pyridazinone Derivatives as Antiulcer, Antisecretory, Antihistamine and Particularly Against Histamine H3R, Mini Rev. Med. Chem., 14, 1093 (2015); https://doi.org/10.2174/1389557514666141127143133
- M. Asif, M. Acharya, Lakshmayya and A. Singh, Rajiv Gandhi Univ. Health Sci. J. Pharm. Sci., 5, 81 (2015); https://doi.org/10.5530/rjps.2015.2.7
- M. Asif, Antifeedant, Herbicidal and Molluscicidal Activities of Pyridazinone Compounds, Mini Rev. Org. Chem., 10, 113 (2013); https://doi.org/10.2174/1570193X11310020002
- C.M.N. Allerton, M.D. Andrews, J. Blagg, D. Ellis, E. Evrard, M.P. Green, K.K.-C. Liu, G. McMurray, M. Ralph, V. Sanderson, R. Ward and L. Watson, Design and Synthesis of Pyridazinone-Based 5-HT2C Agonists, Bioorg. Med. Chem. Lett., 19, 5791 (2009); https://doi.org/10.1016/j.bmcl.2009.07.136
- J. Willis, A. Nelson, F.W. Black, A. Borges, A. An and J. Rice, Barbiturate Anticonvulsants: A Neuropsychological and Quantitative Electroencephalographic Study, J. Child Neurol., 12, 169 (1997); https://doi.org/10.1177/088307389701200303
- J. Riss, J. Cloyd, J. Gates and S. Collins, Benzodiazepines in Epilepsy: Pharmacology and Pharmacokinetics, Acta Neurol. Scand., 118, 69 (2008); https://doi.org/10.1111/j.1600-0404.2008.01004.x
- J.C. Gomora, A.N. Daud, M. Weiergräber and E. Perez-Reyes, Block of Cloned Human T-Type Calcium Channels by Succinimide Antiepileptic Drugs, Mol. Pharmacol., 60, 1121 (2001); https://doi.org/10.1124/mol.60.5.1121
- R. Bansal and S. Thota, Med. Chem. Res., 22, 2539 (2013); https://doi.org/10.1007/s00044-012-0261-1
- M. Goto, I. Miyahara, K. Hirotsu, M. Conway, N. Yennawar, M.M. Islam and S.M. Hutson, Structural Determinants for Branched-Chain Aminotransferase Isozyme-Specific Inhibition by the Anticonvulsant Drug Gabapentin, J. Biol. Chem., 280, 37246 (2005); https://doi.org/10.1074/jbc.M506486200
References
N. Berdigaliyev and M. Aljofan, An Overview of Drug Discovery and Development, Future Med. Chem., 12, 939 (2020); https://doi.org/10.4155/fmc-2019-0307
S. Ekins, J. Mestres and B. Testa, In silico Pharmacology for Drug Discovery: Methods for Virtual Ligand Screening and Profiling, Br. J. Pharmacol., 152, 9 (2007); https://doi.org/10.1038/sj.bjp.0707305
A. Sethi, K. Joshi, K. Sasikala and M. Alvala, Eds. V. Gaitonde, P. Karmakar and A. Trivedi, Molecular Docking in Modern Drug Discovery: Principles and Recent Applications, Drug Discovery and Development - New Advances, IntechOpen (2019); https://doi.org/10.5772/intechopen.85991
X.-Y. Meng, H.-X. Zhang, M. Mezei and M. Cui, Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, Curr. Comput. Aided-Drug Des., 7, 146 (2011); https://doi.org/10.2174/157340911795677602
L. Ferreira, R. dos Santos, G. Oliva and A. Andricopulo, Molecular Docking and Structure-Based Drug Design Strategies, Molecules, 20, 13384 (2015); https://doi.org/10.3390/molecules200713384
G.-F. Yang and X. Huang, Development of Quantitative Structure-Activity Relationships and Its Application in Rational Drug Design, Curr. Pharm. Des., 12, 4601 (2006); https://doi.org/10.2174/138161206779010431
A. Tripathi and V.A. Bankaitis, Molecular Docking: From Lock and Key to Combination Lock, J. Mol. Med. Clin. Appl., 2, 4 (2018); https://doi.org/10.16966/2575-0305.106
D.-A. Silva, G.R. Bowman, A. Sosa-Peinado and X. Huang, A Role for Both Conformational Selection and Induced Fit in Ligand Binding by the LAO Protein, PLOS Comput. Biol., 7, e1002054 (2011); https://doi.org/10.1371/journal.pcbi.1002054
D.M. Lorber and B.K. Shoichet, Flexible Ligand Docking using Conformational Ensembles, Protein Sci., 7, 938 (1998); https://doi.org/10.1002/pro.5560070411
S. Agarwal and R. Mehrotra, An Overview of Molecular Docking, JSM Chem., 1, 5 (2016).
P.J. Jones, E.C. Merrick, T.W. Batts, N.J. Hargus, Y. Wang, J.P. Stables, E.H. Bertram, M.L. Brown and M.K. Patel, Modulation of Sodium Channel Inactivation Gating by a Novel Lactam: Implications for Seizure Suppression in Chronic Limbic Epilepsy, J. Pharmacol. Exp. Ther., 328, 201 (2009); https://doi.org/10.1124/jpet.108.144709
M. Iman, A. Saadabadi, A. Davood, H. Shafaroodi, A. Nikbakht, A. Ansari and M. Abedin, Docking, Synthesis and Anticonvulsant Activity of N-Substituted Isoindoline-1,3-dione, Iran. J. Pharm. Res., 16, 586 (2017).
C.A. Granbichler, G. Zimmermann, W. Oberaigner, G. Kuchukhidze, J.-P. Ndayisaba, A. Taylor, G. Luef, A.C. Bathke and E. Trinka, Potential Years Lost and Life Expectancy in Adults with Newly Diagnosed Epilepsy, Epilepsia, 58, 1939 (2017); https://doi.org/10.1111/epi.13902
G. Gururaj, P. Satishchandra and S. Amudhan, Epilepsy in India I: Epidemiology and Public Health, Ann. Indian Acad. Neurol., 18, 263 (2015); https://doi.org/10.4103/0972-2327.160093
A.K. Ngugi, C. Bottomley, I. Kleinschmidt, J.W. Sander and C.R. Newton, Estimation of the Burden of Active and Life-Time Epilepsy: A Meta-Analytic Approach, Epilepsia, 51, 883 (2010); https://doi.org/10.1111/j.1528-1167.2009.02481.x
S. Engelborghs, R. D’Hooge and P.P. De Deyn, Pathophysiology of Epilepsy, Acta Neurol. Belg., 100, 201 (2000).
P.A. March, Seizures: Classification, Etiologies, and Pathophysiology, Clin. Tech. Small Anim. Pract., 13, 119 (1998); https://doi.org/10.1016/S1096-2867(98)80033-9
T.V. Kodankandath, D. Theodore and D. Samanta, Generalized Tonic-Clonic Seizure, StatPearls Publishing: Treasure Island (FL) (2021).
A. Singh, Lakshmayya and M. Asif, Analgesic and Anti-Inflammatory Activities of Several 4-Substituted-6-(3¢-nitrophenyl)pyridazin-(2H)-3-one Derivatives, Braz. J. Pharm. Sci., 49, 903 (2013); https://doi.org/10.1590/S1984-82502013000400030
M. Asif and A. Singh, Anticonvulsant Activities of 4-Benzylidene-6-(4-methyl-phenyl)-4,5-dihydropyridazin-(2H)-ones and 4-Benzylidene-6-(4-chloro-phenyl)-4,5-dihydropyridazin-(2H)-ones, Open Pharm. Sci. J., 3, 203 (2016); https://doi.org/10.2174/1874844901603010196
M. Asif, A Mini Review on Biological Activities of Pyridazinone Derivatives as Antiulcer, Antisecretory, Antihistamine and Particularly Against Histamine H3R, Mini Rev. Med. Chem., 14, 1093 (2015); https://doi.org/10.2174/1389557514666141127143133
M. Asif, M. Acharya, Lakshmayya and A. Singh, Rajiv Gandhi Univ. Health Sci. J. Pharm. Sci., 5, 81 (2015); https://doi.org/10.5530/rjps.2015.2.7
M. Asif, Antifeedant, Herbicidal and Molluscicidal Activities of Pyridazinone Compounds, Mini Rev. Org. Chem., 10, 113 (2013); https://doi.org/10.2174/1570193X11310020002
C.M.N. Allerton, M.D. Andrews, J. Blagg, D. Ellis, E. Evrard, M.P. Green, K.K.-C. Liu, G. McMurray, M. Ralph, V. Sanderson, R. Ward and L. Watson, Design and Synthesis of Pyridazinone-Based 5-HT2C Agonists, Bioorg. Med. Chem. Lett., 19, 5791 (2009); https://doi.org/10.1016/j.bmcl.2009.07.136
J. Willis, A. Nelson, F.W. Black, A. Borges, A. An and J. Rice, Barbiturate Anticonvulsants: A Neuropsychological and Quantitative Electroencephalographic Study, J. Child Neurol., 12, 169 (1997); https://doi.org/10.1177/088307389701200303
J. Riss, J. Cloyd, J. Gates and S. Collins, Benzodiazepines in Epilepsy: Pharmacology and Pharmacokinetics, Acta Neurol. Scand., 118, 69 (2008); https://doi.org/10.1111/j.1600-0404.2008.01004.x
J.C. Gomora, A.N. Daud, M. Weiergräber and E. Perez-Reyes, Block of Cloned Human T-Type Calcium Channels by Succinimide Antiepileptic Drugs, Mol. Pharmacol., 60, 1121 (2001); https://doi.org/10.1124/mol.60.5.1121
R. Bansal and S. Thota, Med. Chem. Res., 22, 2539 (2013); https://doi.org/10.1007/s00044-012-0261-1
M. Goto, I. Miyahara, K. Hirotsu, M. Conway, N. Yennawar, M.M. Islam and S.M. Hutson, Structural Determinants for Branched-Chain Aminotransferase Isozyme-Specific Inhibition by the Anticonvulsant Drug Gabapentin, J. Biol. Chem., 280, 37246 (2005); https://doi.org/10.1074/jbc.M506486200