Main Article Content

Abstract

In current times, researchers adopted the click chemistry approach for the synthesis of various drug-like molecules by using a few reliable, feasible, practical and selective chemical transformations via click formation. In present work, we focussed on the most triazole clubbed thiazolidine-2,4-dione derivatives as the most promising motifs for broad biological application. A total of fifteen (CF-4a-o) derivatives were synthesized and well characterized with various analytical techniques.

Keywords

1 2 3-Triazole Thiazolidine-2 4-dione Triazole clubbed thiazolidine-2 Click chemistry Antimicrobial activity Antifungal activity.

Article Details

How to Cite
R. Rathod, A., Galachar, K., S. Korgaokar, S., & T. Naliapara, Y. (2021). Synthesis and Antimicrobial Activity of (Z)-2-(4-((5-((1-Benzylpiperidin-4-yl)methylene)-2,4-dioxothiazolidin-3-yl)methyl)-1H-1,2,3-triazol-1-yl)-N-phenylacetamides. Asian Journal of Organic & Medicinal Chemistry, 6(4), 315–321. https://doi.org/10.14233/ajomc.2021.AJOMC-P344

References

  1. H.C. Kolb, M.G. Finn and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
  2. P.S. Baran, T.J. Maimone and J.M. Richter, Total Synthesis of Marine Natural Products without using Protecting Groups, Nature, 446, 404 (2007); https://doi.org/10.1038/nature05569
  3. C. Besanceney-Webler, H. Jiang, T. Zheng, L. Feng, D. Soriano del Amo, W. Wang, L.M. Klivansky, F.L. Marlow, Y. Liu and P. Wu, Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study, Angew. Chem. Int. Ed., 50, 8051 (2011); https://doi.org/10.1002/anie.201101817
  4. H.C. Kolb and K.B. Sharpless, The Growing Impact of Click Chemistry on Drug Discovery, Drug Discov. Today, 8, 1128 (2003); https://doi.org/10.1016/S1359-6446(03)02933-7
  5. V.V. Rostovtsev, L.G. Green, V.V. Fokin and K.B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes, Angew. Chem. Int. Ed., 41, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
  6. P. Appukkuttan, W. Dehaen, V.V. Fokin and E. Van der Eycken, A Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(I)-Catalyzed Three-Component Reaction, Org. Lett., 6, 4223 (2004); https://doi.org/10.1021/ol048341v
  7. W.H. Binder and R. Sachsenhofer, ‘Click’ Chemistry in Polymer and Materials Science, Macromol. Rapid Commun., 28, 15 (2007); https://doi.org/10.1002/marc.200600625
  8. R. Huisgen, 1,3-Dipolar Cycloadditions. Past and Future, Angew. Chem. Int. Ed. Engl., 2, 565 (1963); https://doi.org/10.1002/anie.196305651
  9. R. Kharb, P.C. Sharma and M.S. Yar, Pharmacological Significance of Triazole Scaffold, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304
  10. B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali and N.S. Kumari, Synthesis, Characterization and Antimicrobial Activity of Some Substituted 1,2,3-Triazoles, Eur. J. Med. Chem., 40, 1173 (2005); https://doi.org/10.1016/j.ejmech.2005.02.013
  11. Y.S. Sanghvi, B.K. Bhattacharya, G.D. Kini, S.S. Matsumoto, S.B. Larson, W.B. Jolley, R.K. Robins and G.R. Revankar, Growth Inhibition and Induction of Cellular Differentiation of Human Myeloid Leukemia Cells in Culture by Carbamoyl Congeners of Ribavirin, J. Med. Chem., 33, 336 (1990); https://doi.org/10.1021/jm00163a054
  12. L. Chen and C.J. Li, Catalyzed Reactions of Alkynes in Water, Adv. Synth. Catal., 348, 1459 (2006); https://doi.org/10.1002/adsc.200606090
  13. E. Sheremet, R. Tomanov, E. Trukhin and V. Berestovitskaya, Synthesis of 4-Aryl-5-nitro-1,2,3-triazoles, Russ. J. Org. Chem., 40, 594 (2004); https://doi.org/10.1023/B:RUJO.0000036090.61432.18
  14. H.N. Hafez, H.-A.S. Abbas and A.-R. El-Gazzar, Synthesis and Evaluation of Analgesic, Anti-inflammatory and Ulcerogenic Activities of Some Triazolo- and 2-Pyrazolyl-pyrido[2,3-d]pyrimidines, Acta Pharm., 58, 359 (2008); https://doi.org/10.2478/v10007-008-0024-1
  15. K.M. Banu, A. Dinakar and C. Ananthanarayanan, Synthesis and Characterization, Antimicrobial Studies and Pharmacological Screening of Some Substituted 1,2,3-Triazoles, Indian J. Pharm. Sci., 61, 202 (1999).
  16. L.-P. Guan, Q.-H. Jin, G.-R. Tian, K.-Y. Chai and Z.-S. Quan, Synthesis of Some Quinoline-2(1H)-one and 1, 2, 4-triazolo[4,3-a]quinoline Derivatives as Potent Anticonvulsants, J. Pharm. Pharm. Sci., 10, 254 (2007).
  17. A. Passannanti, P. Diana, P. Barraja, F. Mingoia, A. Lauria and G. Cirrincione, Pyrrolo[2,3-d][1,2,3]triazoles as Potential Antineoplastic Agents, Heterocycles, 6, 1229 (1998).
  18. R. Gujjar, A. Marwaha, F. El Mazouni, J. White, K.L. White, S. Creason, D.M. Shackleford, J. Baldwin, W.N. Charman, F.S. Buckner, S. Charman, P.K. Rathod and M.A. Phillips, Identification of a Metabolically Stable Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Antimalarial Activity in Mice, J. Med. Chem., 52, 1864 (2009); https://doi.org/10.1021/jm801343r
  19. B.A. Johns, J.G. Weatherhead, S.H. Allen, J.B. Thompson, E.P. Garvey, S.A. Foster, J.L. Jeffrey and W.H. Miller, The Use of Oxadiazole and Triazole Substituted Naphthyridines as HIV-1 Integrase Inhibitors. Part 1: Establishing The Pharmacophore, Bioorg. Med. Chem. Lett., 19, 1802 (2009); https://doi.org/10.1016/j.bmcl.2009.01.090
  20. S. Manfredini, C. Beatrice Vicentini, M. Manfrini, N. Bianchi, C. Rutigliano, C. Mischiati and R. Gambari, Pyrazolo-Triazoles as Light Activable DNA Cleaving Agents, Bioorg. Med. Chem., 8, 2343 (2000); https://doi.org/10.1016/S0968-0896(00)00160-7
  21. A. Duran, H. Dogan and S. Rollas, Synthesis and Preliminary Anticancer Activity of New 1,4-Dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones, Il Farmaco, 57, 559 (2002); https://doi.org/10.1016/S0014-827X(02)01248-X
  22. C. Day, Thiazolidinediones: A New Class of Antidiabetic Drugs, Diabet. Med., 16, 179 (1999); https://doi.org/10.1046/j.1464-5491.1999.00023.x
  23. M. Tuncbilek and N. Altanlar, Synthesis of New 3-(Substituted Phenacyl)-5-[3¢-(4H-4-oxo-1-benzopyran-2-yl)benzylidene]-2,4-thiazolidinediones and their Antimicrobial Activity, Arch. Pharm., 339, 213 (2006); https://doi.org/10.1002/ardp.200500180
  24. H. Hadj Ammar, S. Lajili, R. Ben Said, D. Le Cerf, A. Bouraoui and H. Majdoub, Physico-Chemical Characterization and Pharmacological Evaluation of Sulfated Polysaccharides from Three Species of Mediterranean Brown Algae of the Genus Cystoseira, Daru, 23, 1 (2015); https://doi.org/10.1186/s40199-015-0089-6
  25. K.A. Reddy, B.B. Lohray, V. Bhushan, A.S. Reddy, P.H. Kishore, V.V. Rao, V. Saibaba, A.C. Bajji, B.M. Rajesh, K.V. Reddy, R. Chakrabarti and R. Rajagopalan, Novel Euglycemic and Hypolipidemic Agents: Part-2 Antioxidant Moiety as Structural Motif, Bioorg. Med. Chem. Lett., 8, 999 (1998); https://doi.org/10.1016/S0960-894X(98)00159-0
  26. R. Maccari, R. Ottanà, C. Curinga, M.G. Vigorita, D. Rakowitz, T. Steindl and T. Langer, Structure–Activity Relationships and Molecular Modelling of 5-Arylidene-2,4-thiazolidinediones Active as Aldose Reductase Inhibitors, Bioorg. Med. Chem., 13, 2809 (2005); https://doi.org/10.1016/j.bmc.2005.02.026
  27. Y. Chinthala, A. Kumar Domatti, A. Sarfaraz, S.P. Singh, N. Kumar Arigari, N. Gupta, S.K.V.N. Satya, J. Kotesh Kumar, F. Khan, A.K. Tiwari and G. Paramjit, Synthesis, Biological Evaluation and Molecular Modeling Studies of Some Novel Thiazolidinediones with Triazole Ring, Eur. J. Med. Chem., 70, 308 (2013); https://doi.org/10.1016/j.ejmech.2013.10.005
  28. V. Patil, K. Tilekar, S. Mehendale-Munj, R. Mohan and C. Ramaa, Synthesis and Primary Cytotoxicity Evaluation of New 5-benzylidene-2,4-Thiazolidinedione Derivatives, Eur. J. Med. Chem., 45, 4539 (2010); https://doi.org/10.1016/j.ejmech.2010.07.014
  29. N. Sunduru, K. Srivastava, S. Rajakumar, S. Puri, J. Saxena and P.M. Chauhan, Synthesis of Novel Thiourea, Thiazolidinedione and Thioparabanic Acid Derivatives of 4-aminoquinoline as Potent Antimalarials, Bioorg. Med. Chem. Lett., 19, 2570 (2009); https://doi.org/10.1016/j.bmcl.2009.03.026
  30. B. Hu, J. Ellingboe, I. Gunawan, S. Han, E. Largis, Z. Li, M. Malamas, R. Mulvey, A. Oliphant, F.-W. Sum, J. Tillett and V. Wong, 2,4-Thiazolidinediones as Potent and Selective Human b3 Agonists, Bioorg. Med. Chem. Lett., 11, 757 (2001); https://doi.org/10.1016/S0960-894X(01)00063-4
  31. D. Gupta, N.N. Ghosh and R. Chandra, Synthesis and Pharmacological Evaluation of Substituted 5-[4-[2-(6,7-Dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione Derivatives as Potent Euglycemic and Hypolipidemic Agents, Bioorg. Med. Chem. Lett., 15, 1019 (2005); https://doi.org/10.1016/j.bmcl.2004.12.041
  32. M.T. Heneka and G.E. Landreth, PPARs in the Brain, Cell Biol. Lipids, 1771, 1031 (2007); https://doi.org/10.1016/j.bbalip.2007.04.016
  33. Y.M. Ha, Y.J. Park, J.-A. Kim, D. Park, J.Y. Park, H.J. Lee, J.Y. Lee, H.R. Moon and H.Y. Chung, Design and Synthesis of 5-(Substituted benzylidene)thiazolidine-2,4-dione Derivatives as Novel Tyrosinase Inhibitors, Eur. J. Med. Chem., 49, 245 (2012); https://doi.org/10.1016/j.ejmech.2012.01.019
  34. S.K. Manjal, R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur and R.K. Rawal, Synthetic and Medicinal Perspective of Thiazolidinones: A Review, Bioorg. Chem., 75, 406 (2017); https://doi.org/10.1016/j.bioorg.2017.10.014