Main Article Content
Abstract
In current times, researchers adopted the click chemistry approach for the synthesis of various drug-like molecules by using a few reliable, feasible, practical and selective chemical transformations via click formation. In present work, we focussed on the most triazole clubbed thiazolidine-2,4-dione derivatives as the most promising motifs for broad biological application. A total of fifteen (CF-4a-o) derivatives were synthesized and well characterized with various analytical techniques.
Keywords
Article Details
Copyright (c) 2021 Asian Journal of Organic & Medicinal Chemistry
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- H.C. Kolb, M.G. Finn and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
- P.S. Baran, T.J. Maimone and J.M. Richter, Total Synthesis of Marine Natural Products without using Protecting Groups, Nature, 446, 404 (2007); https://doi.org/10.1038/nature05569
- C. Besanceney-Webler, H. Jiang, T. Zheng, L. Feng, D. Soriano del Amo, W. Wang, L.M. Klivansky, F.L. Marlow, Y. Liu and P. Wu, Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study, Angew. Chem. Int. Ed., 50, 8051 (2011); https://doi.org/10.1002/anie.201101817
- H.C. Kolb and K.B. Sharpless, The Growing Impact of Click Chemistry on Drug Discovery, Drug Discov. Today, 8, 1128 (2003); https://doi.org/10.1016/S1359-6446(03)02933-7
- V.V. Rostovtsev, L.G. Green, V.V. Fokin and K.B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes, Angew. Chem. Int. Ed., 41, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
- P. Appukkuttan, W. Dehaen, V.V. Fokin and E. Van der Eycken, A Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(I)-Catalyzed Three-Component Reaction, Org. Lett., 6, 4223 (2004); https://doi.org/10.1021/ol048341v
- W.H. Binder and R. Sachsenhofer, ‘Click’ Chemistry in Polymer and Materials Science, Macromol. Rapid Commun., 28, 15 (2007); https://doi.org/10.1002/marc.200600625
- R. Huisgen, 1,3-Dipolar Cycloadditions. Past and Future, Angew. Chem. Int. Ed. Engl., 2, 565 (1963); https://doi.org/10.1002/anie.196305651
- R. Kharb, P.C. Sharma and M.S. Yar, Pharmacological Significance of Triazole Scaffold, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304
- B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali and N.S. Kumari, Synthesis, Characterization and Antimicrobial Activity of Some Substituted 1,2,3-Triazoles, Eur. J. Med. Chem., 40, 1173 (2005); https://doi.org/10.1016/j.ejmech.2005.02.013
- Y.S. Sanghvi, B.K. Bhattacharya, G.D. Kini, S.S. Matsumoto, S.B. Larson, W.B. Jolley, R.K. Robins and G.R. Revankar, Growth Inhibition and Induction of Cellular Differentiation of Human Myeloid Leukemia Cells in Culture by Carbamoyl Congeners of Ribavirin, J. Med. Chem., 33, 336 (1990); https://doi.org/10.1021/jm00163a054
- L. Chen and C.J. Li, Catalyzed Reactions of Alkynes in Water, Adv. Synth. Catal., 348, 1459 (2006); https://doi.org/10.1002/adsc.200606090
- E. Sheremet, R. Tomanov, E. Trukhin and V. Berestovitskaya, Synthesis of 4-Aryl-5-nitro-1,2,3-triazoles, Russ. J. Org. Chem., 40, 594 (2004); https://doi.org/10.1023/B:RUJO.0000036090.61432.18
- H.N. Hafez, H.-A.S. Abbas and A.-R. El-Gazzar, Synthesis and Evaluation of Analgesic, Anti-inflammatory and Ulcerogenic Activities of Some Triazolo- and 2-Pyrazolyl-pyrido[2,3-d]pyrimidines, Acta Pharm., 58, 359 (2008); https://doi.org/10.2478/v10007-008-0024-1
- K.M. Banu, A. Dinakar and C. Ananthanarayanan, Synthesis and Characterization, Antimicrobial Studies and Pharmacological Screening of Some Substituted 1,2,3-Triazoles, Indian J. Pharm. Sci., 61, 202 (1999).
- L.-P. Guan, Q.-H. Jin, G.-R. Tian, K.-Y. Chai and Z.-S. Quan, Synthesis of Some Quinoline-2(1H)-one and 1, 2, 4-triazolo[4,3-a]quinoline Derivatives as Potent Anticonvulsants, J. Pharm. Pharm. Sci., 10, 254 (2007).
- A. Passannanti, P. Diana, P. Barraja, F. Mingoia, A. Lauria and G. Cirrincione, Pyrrolo[2,3-d][1,2,3]triazoles as Potential Antineoplastic Agents, Heterocycles, 6, 1229 (1998).
- R. Gujjar, A. Marwaha, F. El Mazouni, J. White, K.L. White, S. Creason, D.M. Shackleford, J. Baldwin, W.N. Charman, F.S. Buckner, S. Charman, P.K. Rathod and M.A. Phillips, Identification of a Metabolically Stable Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Antimalarial Activity in Mice, J. Med. Chem., 52, 1864 (2009); https://doi.org/10.1021/jm801343r
- B.A. Johns, J.G. Weatherhead, S.H. Allen, J.B. Thompson, E.P. Garvey, S.A. Foster, J.L. Jeffrey and W.H. Miller, The Use of Oxadiazole and Triazole Substituted Naphthyridines as HIV-1 Integrase Inhibitors. Part 1: Establishing The Pharmacophore, Bioorg. Med. Chem. Lett., 19, 1802 (2009); https://doi.org/10.1016/j.bmcl.2009.01.090
- S. Manfredini, C. Beatrice Vicentini, M. Manfrini, N. Bianchi, C. Rutigliano, C. Mischiati and R. Gambari, Pyrazolo-Triazoles as Light Activable DNA Cleaving Agents, Bioorg. Med. Chem., 8, 2343 (2000); https://doi.org/10.1016/S0968-0896(00)00160-7
- A. Duran, H. Dogan and S. Rollas, Synthesis and Preliminary Anticancer Activity of New 1,4-Dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones, Il Farmaco, 57, 559 (2002); https://doi.org/10.1016/S0014-827X(02)01248-X
- C. Day, Thiazolidinediones: A New Class of Antidiabetic Drugs, Diabet. Med., 16, 179 (1999); https://doi.org/10.1046/j.1464-5491.1999.00023.x
- M. Tuncbilek and N. Altanlar, Synthesis of New 3-(Substituted Phenacyl)-5-[3¢-(4H-4-oxo-1-benzopyran-2-yl)benzylidene]-2,4-thiazolidinediones and their Antimicrobial Activity, Arch. Pharm., 339, 213 (2006); https://doi.org/10.1002/ardp.200500180
- H. Hadj Ammar, S. Lajili, R. Ben Said, D. Le Cerf, A. Bouraoui and H. Majdoub, Physico-Chemical Characterization and Pharmacological Evaluation of Sulfated Polysaccharides from Three Species of Mediterranean Brown Algae of the Genus Cystoseira, Daru, 23, 1 (2015); https://doi.org/10.1186/s40199-015-0089-6
- K.A. Reddy, B.B. Lohray, V. Bhushan, A.S. Reddy, P.H. Kishore, V.V. Rao, V. Saibaba, A.C. Bajji, B.M. Rajesh, K.V. Reddy, R. Chakrabarti and R. Rajagopalan, Novel Euglycemic and Hypolipidemic Agents: Part-2 Antioxidant Moiety as Structural Motif, Bioorg. Med. Chem. Lett., 8, 999 (1998); https://doi.org/10.1016/S0960-894X(98)00159-0
- R. Maccari, R. Ottanà, C. Curinga, M.G. Vigorita, D. Rakowitz, T. Steindl and T. Langer, Structure–Activity Relationships and Molecular Modelling of 5-Arylidene-2,4-thiazolidinediones Active as Aldose Reductase Inhibitors, Bioorg. Med. Chem., 13, 2809 (2005); https://doi.org/10.1016/j.bmc.2005.02.026
- Y. Chinthala, A. Kumar Domatti, A. Sarfaraz, S.P. Singh, N. Kumar Arigari, N. Gupta, S.K.V.N. Satya, J. Kotesh Kumar, F. Khan, A.K. Tiwari and G. Paramjit, Synthesis, Biological Evaluation and Molecular Modeling Studies of Some Novel Thiazolidinediones with Triazole Ring, Eur. J. Med. Chem., 70, 308 (2013); https://doi.org/10.1016/j.ejmech.2013.10.005
- V. Patil, K. Tilekar, S. Mehendale-Munj, R. Mohan and C. Ramaa, Synthesis and Primary Cytotoxicity Evaluation of New 5-benzylidene-2,4-Thiazolidinedione Derivatives, Eur. J. Med. Chem., 45, 4539 (2010); https://doi.org/10.1016/j.ejmech.2010.07.014
- N. Sunduru, K. Srivastava, S. Rajakumar, S. Puri, J. Saxena and P.M. Chauhan, Synthesis of Novel Thiourea, Thiazolidinedione and Thioparabanic Acid Derivatives of 4-aminoquinoline as Potent Antimalarials, Bioorg. Med. Chem. Lett., 19, 2570 (2009); https://doi.org/10.1016/j.bmcl.2009.03.026
- B. Hu, J. Ellingboe, I. Gunawan, S. Han, E. Largis, Z. Li, M. Malamas, R. Mulvey, A. Oliphant, F.-W. Sum, J. Tillett and V. Wong, 2,4-Thiazolidinediones as Potent and Selective Human b3 Agonists, Bioorg. Med. Chem. Lett., 11, 757 (2001); https://doi.org/10.1016/S0960-894X(01)00063-4
- D. Gupta, N.N. Ghosh and R. Chandra, Synthesis and Pharmacological Evaluation of Substituted 5-[4-[2-(6,7-Dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione Derivatives as Potent Euglycemic and Hypolipidemic Agents, Bioorg. Med. Chem. Lett., 15, 1019 (2005); https://doi.org/10.1016/j.bmcl.2004.12.041
- M.T. Heneka and G.E. Landreth, PPARs in the Brain, Cell Biol. Lipids, 1771, 1031 (2007); https://doi.org/10.1016/j.bbalip.2007.04.016
- Y.M. Ha, Y.J. Park, J.-A. Kim, D. Park, J.Y. Park, H.J. Lee, J.Y. Lee, H.R. Moon and H.Y. Chung, Design and Synthesis of 5-(Substituted benzylidene)thiazolidine-2,4-dione Derivatives as Novel Tyrosinase Inhibitors, Eur. J. Med. Chem., 49, 245 (2012); https://doi.org/10.1016/j.ejmech.2012.01.019
- S.K. Manjal, R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur and R.K. Rawal, Synthetic and Medicinal Perspective of Thiazolidinones: A Review, Bioorg. Chem., 75, 406 (2017); https://doi.org/10.1016/j.bioorg.2017.10.014
References
H.C. Kolb, M.G. Finn and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions, Angew. Chem. Int. Ed., 40, 2004 (2001); https://doi.org/10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
P.S. Baran, T.J. Maimone and J.M. Richter, Total Synthesis of Marine Natural Products without using Protecting Groups, Nature, 446, 404 (2007); https://doi.org/10.1038/nature05569
C. Besanceney-Webler, H. Jiang, T. Zheng, L. Feng, D. Soriano del Amo, W. Wang, L.M. Klivansky, F.L. Marlow, Y. Liu and P. Wu, Increasing the Efficacy of Bioorthogonal Click Reactions for Bioconjugation: A Comparative Study, Angew. Chem. Int. Ed., 50, 8051 (2011); https://doi.org/10.1002/anie.201101817
H.C. Kolb and K.B. Sharpless, The Growing Impact of Click Chemistry on Drug Discovery, Drug Discov. Today, 8, 1128 (2003); https://doi.org/10.1016/S1359-6446(03)02933-7
V.V. Rostovtsev, L.G. Green, V.V. Fokin and K.B. Sharpless, A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes, Angew. Chem. Int. Ed., 41, 2596 (2002); https://doi.org/10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4
P. Appukkuttan, W. Dehaen, V.V. Fokin and E. Van der Eycken, A Microwave-Assisted Click Chemistry Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via a Copper(I)-Catalyzed Three-Component Reaction, Org. Lett., 6, 4223 (2004); https://doi.org/10.1021/ol048341v
W.H. Binder and R. Sachsenhofer, ‘Click’ Chemistry in Polymer and Materials Science, Macromol. Rapid Commun., 28, 15 (2007); https://doi.org/10.1002/marc.200600625
R. Huisgen, 1,3-Dipolar Cycloadditions. Past and Future, Angew. Chem. Int. Ed. Engl., 2, 565 (1963); https://doi.org/10.1002/anie.196305651
R. Kharb, P.C. Sharma and M.S. Yar, Pharmacological Significance of Triazole Scaffold, J. Enzyme Inhib. Med. Chem., 26, 1 (2011); https://doi.org/10.3109/14756360903524304
B.S. Holla, M. Mahalinga, M.S. Karthikeyan, B. Poojary, P.M. Akberali and N.S. Kumari, Synthesis, Characterization and Antimicrobial Activity of Some Substituted 1,2,3-Triazoles, Eur. J. Med. Chem., 40, 1173 (2005); https://doi.org/10.1016/j.ejmech.2005.02.013
Y.S. Sanghvi, B.K. Bhattacharya, G.D. Kini, S.S. Matsumoto, S.B. Larson, W.B. Jolley, R.K. Robins and G.R. Revankar, Growth Inhibition and Induction of Cellular Differentiation of Human Myeloid Leukemia Cells in Culture by Carbamoyl Congeners of Ribavirin, J. Med. Chem., 33, 336 (1990); https://doi.org/10.1021/jm00163a054
L. Chen and C.J. Li, Catalyzed Reactions of Alkynes in Water, Adv. Synth. Catal., 348, 1459 (2006); https://doi.org/10.1002/adsc.200606090
E. Sheremet, R. Tomanov, E. Trukhin and V. Berestovitskaya, Synthesis of 4-Aryl-5-nitro-1,2,3-triazoles, Russ. J. Org. Chem., 40, 594 (2004); https://doi.org/10.1023/B:RUJO.0000036090.61432.18
H.N. Hafez, H.-A.S. Abbas and A.-R. El-Gazzar, Synthesis and Evaluation of Analgesic, Anti-inflammatory and Ulcerogenic Activities of Some Triazolo- and 2-Pyrazolyl-pyrido[2,3-d]pyrimidines, Acta Pharm., 58, 359 (2008); https://doi.org/10.2478/v10007-008-0024-1
K.M. Banu, A. Dinakar and C. Ananthanarayanan, Synthesis and Characterization, Antimicrobial Studies and Pharmacological Screening of Some Substituted 1,2,3-Triazoles, Indian J. Pharm. Sci., 61, 202 (1999).
L.-P. Guan, Q.-H. Jin, G.-R. Tian, K.-Y. Chai and Z.-S. Quan, Synthesis of Some Quinoline-2(1H)-one and 1, 2, 4-triazolo[4,3-a]quinoline Derivatives as Potent Anticonvulsants, J. Pharm. Pharm. Sci., 10, 254 (2007).
A. Passannanti, P. Diana, P. Barraja, F. Mingoia, A. Lauria and G. Cirrincione, Pyrrolo[2,3-d][1,2,3]triazoles as Potential Antineoplastic Agents, Heterocycles, 6, 1229 (1998).
R. Gujjar, A. Marwaha, F. El Mazouni, J. White, K.L. White, S. Creason, D.M. Shackleford, J. Baldwin, W.N. Charman, F.S. Buckner, S. Charman, P.K. Rathod and M.A. Phillips, Identification of a Metabolically Stable Triazolopyrimidine-Based Dihydroorotate Dehydrogenase Inhibitor with Antimalarial Activity in Mice, J. Med. Chem., 52, 1864 (2009); https://doi.org/10.1021/jm801343r
B.A. Johns, J.G. Weatherhead, S.H. Allen, J.B. Thompson, E.P. Garvey, S.A. Foster, J.L. Jeffrey and W.H. Miller, The Use of Oxadiazole and Triazole Substituted Naphthyridines as HIV-1 Integrase Inhibitors. Part 1: Establishing The Pharmacophore, Bioorg. Med. Chem. Lett., 19, 1802 (2009); https://doi.org/10.1016/j.bmcl.2009.01.090
S. Manfredini, C. Beatrice Vicentini, M. Manfrini, N. Bianchi, C. Rutigliano, C. Mischiati and R. Gambari, Pyrazolo-Triazoles as Light Activable DNA Cleaving Agents, Bioorg. Med. Chem., 8, 2343 (2000); https://doi.org/10.1016/S0968-0896(00)00160-7
A. Duran, H. Dogan and S. Rollas, Synthesis and Preliminary Anticancer Activity of New 1,4-Dihydro-3-(3-hydroxy-2-naphthyl)-4-substituted-5H-1,2,4-triazoline-5-thiones, Il Farmaco, 57, 559 (2002); https://doi.org/10.1016/S0014-827X(02)01248-X
C. Day, Thiazolidinediones: A New Class of Antidiabetic Drugs, Diabet. Med., 16, 179 (1999); https://doi.org/10.1046/j.1464-5491.1999.00023.x
M. Tuncbilek and N. Altanlar, Synthesis of New 3-(Substituted Phenacyl)-5-[3¢-(4H-4-oxo-1-benzopyran-2-yl)benzylidene]-2,4-thiazolidinediones and their Antimicrobial Activity, Arch. Pharm., 339, 213 (2006); https://doi.org/10.1002/ardp.200500180
H. Hadj Ammar, S. Lajili, R. Ben Said, D. Le Cerf, A. Bouraoui and H. Majdoub, Physico-Chemical Characterization and Pharmacological Evaluation of Sulfated Polysaccharides from Three Species of Mediterranean Brown Algae of the Genus Cystoseira, Daru, 23, 1 (2015); https://doi.org/10.1186/s40199-015-0089-6
K.A. Reddy, B.B. Lohray, V. Bhushan, A.S. Reddy, P.H. Kishore, V.V. Rao, V. Saibaba, A.C. Bajji, B.M. Rajesh, K.V. Reddy, R. Chakrabarti and R. Rajagopalan, Novel Euglycemic and Hypolipidemic Agents: Part-2 Antioxidant Moiety as Structural Motif, Bioorg. Med. Chem. Lett., 8, 999 (1998); https://doi.org/10.1016/S0960-894X(98)00159-0
R. Maccari, R. Ottanà, C. Curinga, M.G. Vigorita, D. Rakowitz, T. Steindl and T. Langer, Structure–Activity Relationships and Molecular Modelling of 5-Arylidene-2,4-thiazolidinediones Active as Aldose Reductase Inhibitors, Bioorg. Med. Chem., 13, 2809 (2005); https://doi.org/10.1016/j.bmc.2005.02.026
Y. Chinthala, A. Kumar Domatti, A. Sarfaraz, S.P. Singh, N. Kumar Arigari, N. Gupta, S.K.V.N. Satya, J. Kotesh Kumar, F. Khan, A.K. Tiwari and G. Paramjit, Synthesis, Biological Evaluation and Molecular Modeling Studies of Some Novel Thiazolidinediones with Triazole Ring, Eur. J. Med. Chem., 70, 308 (2013); https://doi.org/10.1016/j.ejmech.2013.10.005
V. Patil, K. Tilekar, S. Mehendale-Munj, R. Mohan and C. Ramaa, Synthesis and Primary Cytotoxicity Evaluation of New 5-benzylidene-2,4-Thiazolidinedione Derivatives, Eur. J. Med. Chem., 45, 4539 (2010); https://doi.org/10.1016/j.ejmech.2010.07.014
N. Sunduru, K. Srivastava, S. Rajakumar, S. Puri, J. Saxena and P.M. Chauhan, Synthesis of Novel Thiourea, Thiazolidinedione and Thioparabanic Acid Derivatives of 4-aminoquinoline as Potent Antimalarials, Bioorg. Med. Chem. Lett., 19, 2570 (2009); https://doi.org/10.1016/j.bmcl.2009.03.026
B. Hu, J. Ellingboe, I. Gunawan, S. Han, E. Largis, Z. Li, M. Malamas, R. Mulvey, A. Oliphant, F.-W. Sum, J. Tillett and V. Wong, 2,4-Thiazolidinediones as Potent and Selective Human b3 Agonists, Bioorg. Med. Chem. Lett., 11, 757 (2001); https://doi.org/10.1016/S0960-894X(01)00063-4
D. Gupta, N.N. Ghosh and R. Chandra, Synthesis and Pharmacological Evaluation of Substituted 5-[4-[2-(6,7-Dimethyl-1,2,3,4-tetrahydro-2-oxo-4-quinoxalinyl)ethoxy]phenyl]methylene]thiazolidine-2,4-dione Derivatives as Potent Euglycemic and Hypolipidemic Agents, Bioorg. Med. Chem. Lett., 15, 1019 (2005); https://doi.org/10.1016/j.bmcl.2004.12.041
M.T. Heneka and G.E. Landreth, PPARs in the Brain, Cell Biol. Lipids, 1771, 1031 (2007); https://doi.org/10.1016/j.bbalip.2007.04.016
Y.M. Ha, Y.J. Park, J.-A. Kim, D. Park, J.Y. Park, H.J. Lee, J.Y. Lee, H.R. Moon and H.Y. Chung, Design and Synthesis of 5-(Substituted benzylidene)thiazolidine-2,4-dione Derivatives as Novel Tyrosinase Inhibitors, Eur. J. Med. Chem., 49, 245 (2012); https://doi.org/10.1016/j.ejmech.2012.01.019
S.K. Manjal, R. Kaur, R. Bhatia, K. Kumar, V. Singh, R. Shankar, R. Kaur and R.K. Rawal, Synthetic and Medicinal Perspective of Thiazolidinones: A Review, Bioorg. Chem., 75, 406 (2017); https://doi.org/10.1016/j.bioorg.2017.10.014