Main Article Content

Abstract

In the present investigation, a mild, efficient and simple procedure has been developed for the synthesis of xanthene derivatives is described via three component condensation of aromatic aldehydes with β-naphthol or dimedone or mixture of β-naphthol and dimedone using Brønsted acidic ionic liquid, triphenyl(propyl-3-sulphonyl)phosphonium toluene-sulfonate under solvent-free conditions. The synthesized compounds were screened for antimicrobial activities against Gram-positive (Bacillus subtilis), Gram-negative (Pseudomonas aeruginosa) bacteria and fungus (Candida albicans). The antioxidant activities of these compounds were determined by DPPH scavenging free radical method. Present methodology has a number of advantages such as mild reaction condition, inexpensive catalyst, stable at room temperature and it was also found that this catalyst might be recovered quantitatively and reused without much loss of catalytic activity.

Keywords

Ionic liquid Xanthenes derivatives Dimedone β-naphthol Recyclable catalyst.

Article Details

How to Cite
Shaikh, K., Chaudhar, U., & Doshi, P. (2020). Bronsted Acidic Ionic Liquid: An Efficient and Reusable Catalyst for the Synthesis of Xanthenes Derivatives as Antimicrobial and Antioxidant Agents. Asian Journal of Organic & Medicinal Chemistry, 5(1), 11–19. https://doi.org/10.14233/ajomc.2020.AJOMC-P218

References

  1. M. Sayyafi, M. Seyyedhamzeh, H.R. Khavasi and A. Bazgir, One-Pot, Three-Component Route to 2H-Indazolo[2,1-b]phthalazine-triones, Tetrahedron, 64, 2375 (2008); https://doi.org/10.1016/j.tet.2008.01.006
  2. J.M. Jamison, K. Krabill, A. Hatwalkar, E. Jamison and C.C. Tsai, Potentiation of the Antiviral Activity of Poly r(A-U) by Xanthene Dyes, Cell Biol. Int. Rep., 14, 1075 (1990); https://doi.org/10.1016/0309-1651(90)90015-Q
  3. A.M. El-Brashy, M.E. Metwally and F.A. El-Sepai, Spectrophotometric Determination of Some Fluoroquinolone Antibacterials by Binary Complex Formation with Xanthene Dyes, Il Farmaco, 59, 809 (2004); https://doi.org/10.1016/j.farmac.2004.07.001
  4. K. Chibale, M. Visser, D. van Schalkwyk, P.J. Smith, A. Saravanamuthu and A.H. Fairlamb, Exploring the Potential of Xanthene Derivatives as Trypanothione Reductase Inhibitors and Chloroquine Potentiating Agents, Tetrahedron, 59, 2289 (2003); https://doi.org/10.1016/S0040-4020(03)00240-0
  5. Y. Tsurumi, H. Ueda, K. Hayashi, S. Takase, M. Nishikawa, S. Kiyoto and M. Okuhara, WS75624 A and B, New Endothelin Converting Enzyme Inhibitors Isolated from Saccharothrix sp. No. 75624, J. Antibiot., 48, 1066 (1995); https://doi.org/10.7164/antibiotics.48.1066
  6. Y. Kumar, R. Green, K.Z. Borysko, D.S. Wise, L.L. Wotring and L.B. Townsend, Synthesis of 2,4-Disubstituted Thiazoles and Selenazoles as Potential Antitumor and Antifilarial Agents. 1. Methyl 4-(isothio-cyanatomethyl)thiazole-2-carbamates, -selenazole-2-carbamates and Related Derivatives, J. Med. Chem., 36, 3843 (1993); https://doi.org/10.1021/jm00076a012
  7. F.W. Bell, A.S. Cantrell, M. Hoegberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, M.D. Kinnick, P. Lind and J.M. Morin Jr., Phenethyl-thiazolethiourea (PETT) Compounds, A New Class of HIV-1 Reverse Transcriptase Inhibitors. 1. Synthesis and Basic Structure-Activity Relationship Studies of PETT Analogs, J. Med. Chem., 38, 4929 (1995); https://doi.org/10.1021/jm00025a010
  8. R. Pereira, C. Gaudon, B. Iglesias, P. Germain, H. Gronemeyer and A.R. De Lera, Synthesis of the PPARb/d-Selective Agonist GW501516 and C4-Thiazole-substituted Analogs, Bioorg. Med. Chem. Lett., 16, 49 (2006); https://doi.org/10.1016/j.bmcl.2005.09.060
  9. F. Zelefack, D. Guilet, N. Fabre, C. Bayet, S. Chevalley, S. Ngouela, B.N. Lenta, A. Valentin, E. Tsamo and M.G. Dijoux-Franca, Cytotoxic and Antiplasmodial Xanthones from Pentadesma butyracea, J. Nat. Prod., 72, 954 (2009); https://doi.org/10.1021/np8005953
  10. A.T. Peters and M. Bide, Amino Derivatives of 1,8-Naphthalic Anhydride and Derived Dyes for Synthetic-Polymer Fibres, Dyes Pigments, 6, 349 (1985); https://doi.org/10.1016/0143-7208(85)85005-1
  11. M. Ahmad, T.A. King, D.K. Ko, B.H. Cha and J. Lee, Performance and Photostability of Xanthene and Pyrromethene Laser Dyes in Sol-Gel Phases, J. Phys. D Appl. Phys., 35, 1473 (2002); https://doi.org/10.1088/0022-3727/35/13/303
  12. R.M. Ion, A. Planner, K. Wiktorowicz and D. Frackowiak, The Incorp-oration of Various Porphyrins into Blood Cells Measured via Flow Cytometry, Absorption and Emission Spectroscopy, Acta Biochim. Pol., 45, 833 (1998); https://doi.org/10.18388/abp.1998_4279
  13. J. Liu, Z. Diwu and W.-Y. Leung, Synthesis and Photophysical Prop-erties of New Fluorinated Benzo[c]xanthene Dyes as Intracellular pH Indicators, Bioorg. Med. Chem. Lett., 11, 2903 (2001); https://doi.org/10.1016/S0960-894X(01)00595-9
  14. A. Domling and I. Ugi, Multicomponent Reactions with Isocyanides, Angew. Chem. Int. Ed., 39, 3168 (2000); https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U
  15. J. Zhu and H. Bienayme, Multicomponent Reactions, Wily-VCH: France (2005).
  16. H. Bienaymé, C. Hulme, G. Oddon and P. Schmitt, Maximizing Synthetic Efficiency: Multi-Component Transformations Lead the Way, Chem. Eur. J., 6, 3321 (2000); https://doi.org/10.1002/1521-3765(20000915)6:18<3321::AID-CHEM3321>3.0.CO;2-A
  17. Y.M. Ren and C. Cai, Three-Components Condensation Catalyzed by Molecular Iodine for the Synthesis of 2,4,6-triarylpyridines and 5-Unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under Solvent-Free Conditions, Monatsh. Chem., 140, 49 (2009); https://doi.org/10.1007/s00706-008-0011-8
  18. S. Bondock, H. El-Azap, E.E.M. Kandeel and M.A. Metwally, Eco-Friendly Solvent-Free Synthesis of Thiazolylpyrazole Derivatives, Monatsh. Chem., 139, 1329 (2008); https://doi.org/10.1007/s00706-008-0930-4
  19. L. Liu, L.Y. Ji and Y.Y. Wei, Aerobic Selective Oxidation of Alcohols to Aldehydes or Ketones Catalyzed by Ionic Liquid Immobilized TEMPO under Solvent-Free Conditions, Monatsh. Chem., 139, 901 (2008); https://doi.org/10.1007/s00706-008-0861-0
  20. R.J. Sarma and J.B. Baruah, One Step Synthesis of Dibenzoxanthenes, Dyes Pigments, 64, 91 (2005); https://doi.org/10.1016/j.dyepig.2004.03.010
  21. A.G. Banerjee, L.P. Kothapalli, P.A. Sharma, A.B. Thomas, R.K. Nanda, S.K. Shrivastava and V.V. Khatanglekar, A Facile Microwave Assisted One Pot Synthesis of Novel Xanthene Derivatives as Potential Anti-Inflammatory and Analgesic Agents, Arab. J. Chem., 9, S480 (2016); https://doi.org/10.1016/j.arabjc.2011.06.001
  22. F. Shirini and N.G. Khaligh, Succinimide-N-sulfonic Acid: An Efficient Catalyst for the Synthesis of Xanthene Derivatives under Solvent-Free Conditions, Dyes Pigments, 95, 789 (2012); https://doi.org/10.1016/j.dyepig.2012.06.022
  23. M. Seyyedhamzeh, P. Mirzaei and A. Bazgir, Solvent-Free Synthesis of Aryl-14H-dibenzo[a,j]xanthenes and 1,8-Dioxooctahydroxanthenes using Silica Sulfuric Acid as Catalyst, Dyes Pigments, 76, 836 (2008); https://doi.org/10.1016/j.dyepig.2007.02.001
  24. C.A. Navarro, C.A. Sierra and C. Ochoa-Puentes, Aqueous Citric Acid as “Green” Reaction Media for the Synthesis of Octahydroxanthenes, Rev. Colomb. Quim., 42, 5 (2013).
  25. F.N. Sadeh, M. Fatahpour, N. Hazeri, M.T. Maghsoodlou and M. Lashkari, One-Pot Condensation Approach for the Synthesis of Some 1,8-Dioxo-octahydroxanthenes and 14-Aryl-14H-dibenzo[a,j]Xanthenes using Lactic Acid as an Efficient and Eco-Friendly Catalyst, Acta Chem. Iasi, 25, 24 (2017); https://doi.org/10.1515/achi-2017-0004
  26. F. Mohamadpour, M.T. Maghsoodlou, M. Lashkari, R. Heydari and N. Hazeri, Green Synthesis of Polysubstituted Quinolines and Xanthene Derivatives Promoted by Tartaric Acid as a Naturally Green Catalyst under Solvent-free Conditions, Chem. J. Mold., 13, 74 (2018); https://doi.org/10.19261/cjm.2017.449
  27. A. de Andrade Bartolomeu, M.L. de Menezes and L.C. da Silva Filho, Efficient One-pot Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthene Derivatives Promoted by Niobium Pentachloride, Chem. Pap., 68, 1593 (2014); https://doi.org/10.2478/s11696-014-0597-8
  28. J.M. Khurana and D. Magoo, pTSA-Catalyzed One-pot Synthesis of 12-Aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-ones in Ionic Liquid and Neat Conditions, Tetrahedron Lett., 50, 4777 (2009); https://doi.org/10.1016/j.tetlet.2009.06.029
  29. B. Pouramiri, M. Shirvani and K. TavakolinejadFacile and Rapid Synthesis of Divers Xanthene Derivatives using Lanthanum(III) Chloride/Chloroacetic Acid as an Efficient and Reusable Catalytic System under Solvent-Free Conditions, J. Serb. Chem. Soc., 82, 483 (2017); https://doi.org/10.2298/JSC160803034P
  30. A.R. Kiasat, A. Mouradzadegun and S.J. Saghanezhad, Phosphosulfonic Acid, An Efficient Solid Acid Catalyst for the One-pot Preparation of 14-Aryl-14H-dibenzo[a,j]xanthenes and 1,8-Dioxooctahydroxanthenes under Solvent-Free Conditions, J. Serb. Chem. Soc., 78, 1291 (2013); https://doi.org/10.2298/JSC121108008K
  31. B. Karami, S. Nejati and K. Eskandari, An Adapted Route to Efficient Synthesis of 1,8-Dioxooctahydroxanthene Derivatives using InCl3 and (HPO3)n as Recyclable Catalysts, Curr. Chem. Lett., 4, 169 (2015); https://doi.org/10.5267/j.ccl.2015.5.001
  32. G.M. Ziarani, A.R. Badiei and M. Azizi, The One-Pot Synthesis of 14-Aryl-14H-dibenzo[a,j]xanthene Derivatives using Sulfonic Acid Functionalized Silica (-Pr-) under Solvent Free Conditions, Sci. Iran., 18, 453 (2011); https://doi.org/10.1016/j.scient.2011.05.008
  33. C.D. Minoo, A. Seyyedeh and B. Ayoob, One-Pot Synthesis of Xanthene Derivatives Under Solvent-Free Conditions, Chem. Pap., 62, 522 (2008); https://doi.org/10.2478/s11696-008-0050-y
  34. N.G. Khaligh, Synthesis of Xanthene Derivatives in Presence of Poly(4-vinylpyridinium) Perchlorate as a Solid Acid under Grinding and Solvent-Free Conditions, Polycycl. Aromat. Compd., 34, 493 (2014); https://doi.org/10.1080/10406638.2014.895950
  35. M.A. Pasha and V.P. Jayashankara, Molecular Iodine Catalyzed Synthesis of Aryl-14H-dibenzo[a,j]xanthenes under Solvent-Free Condition, Bioorg. Med. Chem. Lett., 17, 621 (2007); https://doi.org/10.1016/j.bmcl.2006.11.009
  36. T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev., 99, 2071 (1999); https://doi.org/10.1021/cr980032t
  37. P. Wasserscheid and W. Keim, Ionic Liquids-New “Solutions” for Transition Metal Catalysis, Angew. Chem. Int. Ed., 39, 3772 (2000); https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  38. S. Sahoo, T. Joseph and S.B. Halligudi, Mannich Reaction in Brönsted Acidic Ionic Liquid: A Facile Synthesis of b-Amino Carbonyl Compounds, J. Mol. Catal. Chem., 244, 179 (2006); https://doi.org/10.1016/j.molcata.2005.09.012
  39. A.C. Cole, J.L. Jensen, I. Ntai, K.L.T. Tran, K.J. Weaver, D.C. Forbes and J.H. Davis, Novel Brønsted Acidic Ionic Liquids and Their Use as Dual Solvent-Catalysts, J. Am. Chem. Soc., 124, 5962 (2002); https://doi.org/10.1021/ja026290w
  40. H.R. Shaterian, M. Ranjbar and K. Azizi, Synthesis of Highly Substi-tuted Imidazoles using Brønsted Acidic Ionic Liquid, Triphenyl(propyl-3-sulphonylphosphonium Toluenesulfonate, As Reusable Catalyst, J. Iran. Chem. Soc., 8, 1120 (2011); https://doi.org/10.1007/BF03246570
  41. H.R. Shaterian and M. Aghakhanizadeh, Ionic-Liquid-Catalyzed Green Synthesis of Coumarin Derivatives onder Solvent-free Conditions, Chin. J. Catal., 34, 1690 (2013); https://doi.org/10.1016/S1872-2067(12)60654-8
  42. F.S. Toosi and M. Khakzadi, A New and Facile Synthesis 2,3-Dihydro-quinazolin-4(1H)-ones, Res. Chem. Intermed., 41, 311 (2015); https://doi.org/10.1007/s11164-013-1193-1
  43. J. Kukic, V. Popovic, S. Petrovic, P. Mucaji, A. Ciric, D. Stojkovic and M. Sokovic, Antioxidant and Antimicrobial Activity of Cynara cardunculus Extracts, Food Chem., 107, 861 (2008); https://doi.org/10.1016/j.foodchem.2007.09.005
  44. J.R. Nguemeving, A.G.B. Azebaze, V. Kuete, N.N. Eric Carly, V.P. Beng, M. Meyer, A. Blond, B. Bodo and A.E. Nkengfack, Laurentixanthones A and B, Antimicrobial Xanthones from Vismia laurentii, Phytochemistry, 67, 1341 (2006); https://doi.org/10.1016/j.phytochem.2006.03.018
  45. S.G. Funde, Phytochemicals Evaluation, Anticancer, Antioxidant and Antimicrobial Activity of Acorus calamus Different Solvent Extracts, J. Chem. Pharm. Res., 7, 495 (2015).
  46. S.F. Barbuceanu, D.C. Ilies, G. Saramet, V. Uivarosi, C. Draghici and V. Radulescu, Synthesis and Antioxidant Activity Evaluation of New Compounds from Hydrazinecarbothioamide and 1,2,4-Triazole Class Containing Diarylsulfone and 2,4-Difluorophenyl Moieties, Int. J. Mol. Sci., 15, 10908 (2014); https://doi.org/10.3390/ijms150610908
  47. A.R. Srividya, S.P. Dhanabal, V.K. Misra and G. Suja, Antioxidant and Antimicrobial Activity of Alpinia officinarum, Indian J. Pharm. Sci., 72, 145 (2010); https://doi.org/10.4103/0250-474X.62233
  48. B. Bozin, N. Mimica-Dukic, I. Samojlik, A. Goran and R. Igic, Phenolics as Antioxidants in Garlic (Allium sativum L., Alliaceae), Food Chem., 111, 925 (2008); https://doi.org/10.1016/j.foodchem.2008.04.071