Main Article Content

Abstract

To achieve an efficient synthesis of some novel α-aminophosphonates via Pudovik reaction; ultrasonic irradiation has been adopted. Major benefits of this method is eco-friendly, free of catalyst, high yielding, uncomplicated work-up procedure, short reaction time and solvent free condition. Spectral characterization and elemental analysis of the synthesized samples was carried out. In vitro antioxidant activity of the synthesized a-aminophosphonates compounds was screened by DPPH, O2•− and NO scavenging methods. Good to moderate activities were shown by most of the compounds while compared with the standards.

Keywords

α-Aminophosphonates Ultrasonic irradiation Antioxidant activity.

Article Details

How to Cite
Singh1, A., Singh1, P., Srivastava2, N., Verma3, S., Singh4, A., & Kumar Srivastava5, A. (2022). Ultrasound-Promoted Solvent-Free Synthesis of Some New α-Aminophosphonates as Prospective Antioxidants. Asian Journal of Organic & Medicinal Chemistry, 3(4), 208–213. https://doi.org/10.14233/ajomc.2018.AJOMC-P358

References

  1. P. Merino, E. Marqués-López, R. P. Herrera, Catalytic Enantioselective Hydrophosphonylation of Aldehydes and Imines. Adv. Synth. Catal., 350, 1195 (2008); https://doi.org/10.1002/adsc.200800131
  2. K. Moonen, I. Laureyn and C.V. Stevens, Synthetic Methods for Azaheterocyclic Phosphonates and their Biological Activity, Chem. Rev., 104, 6177 (2004); https://doi.org/10.1021/cr030451c
  3. F. Palacios, C. Alonso, & J. M. de los Santos, a-Phosphono and Phosphino Peptides derived from a-Aminophosphonic and Phosphinic Acids, Curr. Org. Chem., 8, 1481 (2004); https://doi.org/10.2174/1385272043369863
  4. K.A. Schug and W. Lindner, Noncovalent Binding Between Guanidinium and Anionic Groups: Focus on Biological and Synthetic-based Arginine/Guanidinium Interactions with Phosphonate and Sulfonate Residues, Chem Rev., 105, 67 (2005); https://doi.org/10.1021/cr040603j
  5. C. Subramanyam, S.K. Taslim Bhasha, G. Madhava, S.K. Adam, S.D. Srinivasa Murthy and C.N. Raju, Synthesis, Spectral Characterization and Bioactivity Evaluation of Novel a-Aminophosphonates, Phosphorus, Sulfur, Silicon Rel. Elem., 192, 267 (2017); https://doi.org/10.1080/10426507.2016.1225056
  6. S. Yang, X.W. Gao, & C. L. Diao, Synthesis and Antifungal Activity of Novel Chiral a-Aminophosphonates Containing Fluorine Moiety, Chin. J. Chem., 24, 11, 1581 (2006); https://doi.org/10.1002/cjoc.200690296
  7. Y. Xu, K. Yan, B. Song, G. Xu, S. Yang, W. Xue, D. Hu, P. Lu, G. Ouyang, L. Jin and Z. Chen,, Synthesis and Antiviral Bioactivities of a-Aminophosphonates containing Alkoxyethyl Moieties, Molecules, 11, 666 (2006); https://doi.org/10.3390/11090666
  8. B. Sujatha, S. Mohan, C. Subramanyam and K.P. Rao, Microwave-Assisted Synthesis and Anti-inflammatory Activity Evaluation of Some Novel a-aminophosphonates, Phosphorus, Sulfur, Silicon Rel. Elem., 192, 1110 (2017); https://doi.org/10.1080/10426507.2017.1331233
  9. I. Schlemminger, A. Willecke, W. Maison, R. Koch, A. Lutzen and J. Martens, Diastereoselective Lewis Acid Mediated Hydrophosphony-lation of Heterocyclic Imines: A Stereoselective Approach towards a-Aminophosphonates, J. Chem. Soc. Perkin Trans. I, 2804 (2001); https://doi.org/10.1039/B101501J
  10. A. Manjula, B.V. Rao and P. Neelakantan, One-Pot Synthesis of a-Aminophosphonates: An Inexpensive Approach, Synth. Commun. 33, 2963 (2013); https://doi.org/10.1081/SCC-120022468
  11. J.S. Yadav, B.V.S. Reddy, K.S. Raj, K.B. Reddy and A.R. Prasad, ZrCl4-Catalyzed Efficient Synthesis of a-Aminophosphonates, Synthesis, 2277 (2001); https://doi.org/10.1055/s-2001-18444
  12. N. Azizi, F. Rajabi and M.R. Saidi, A Mild and Highly Efficient Protocol for the One-Pot Synthesis of Primary a-Amino Phosphonates under Solvent-Free Conditions, Tetrahedron Lett., 45, 9233 (2004); https://doi.org/10.1016/j.tetlet.2004.10.092
  13. M.Z. Kassaee, F. Movaheddi and H. Masrouri, ZnO Nanoparticles as an Efficient Catalyst for the One-Pot Synthesis of a-Amino Phosphonates, Synlett., 1330 (2009); https://doi.org/10.1055/s-0028-1088135
  14. A. Heydari, A. Karimian and J. Ipaktschi, Lithium Perchlorate/Diethyl-ether Catalyzed Aminophosphonation of Aldehydes, Tetrahedron Lett., 39, 6729 (1998); https://doi.org/10.1016/S0040-4039(98)01411-7
  15. S. Chandrasekhar, S.J. Prakash, V. Jagadeshwar and C. Narsihmulu, Three Component Coupling Catalyzed by TaCl5-SiO2: Synthesis of a-Amino Phosphonates, Tetrahedron Lett., 42, 5561 (2001); https://doi.org/10.1016/S0040-4039(01)01053-X
  16. J.S. Yadav, B.V.S. Reddy and P. Sreedhar, Three Component One Pot Synthesis of a-Hydroxylamino Phosphonates using Ionic Liquids, Adv. Synth. Catal., 345, 564 (2003); https://doi.org/10.1002/adsc.200202209
  17. A.K. Bhattacharya and T. Kaur, An Efficient One-Pot Synthesis of a-Amino Phosphonates Catalyzed by Bismuth Nitrate Pentahydrate, Synlett, 745 (2007); https://doi.org/10.1055/s-2007-970762
  18. A. Heydari, H. Hamadi and M. Pourayoubi, A New One-pot Synthesis of a-Aminophosphonates Catalyzed by H3PW12O40, Catal. Commun. 8, 1224 (2007); https://doi.org/10.1016/j.catcom.2006.11.008
  19. S.D. Mitragotri, D.M. Pore, U.V. Desai and P.P. Wadgaonkar, Sulfamic Acid: An Efficient and Cost-Effective Solid Acid Catalyst for the Synthesis of a-Aminophosphonates at Ambient Temperature, Catal. Commun., 9, 1822 (2008); https://doi.org/10.1016/j.catcom.2008.02.011
  20. S.M. Vahdat, R. Baharfar, M. Tajbakhsh, A. Heydari, S.M. Baghbanian and S. Khaksar, Organocatalytic Synthesis of a-Hydroxy and a-Aminophosphonates, Tetrahedron Lett. 49, 6501 (2008); https://doi.org/10.1016/j.tetlet.2008.08.094
  21. K.S. Ambica, S.C. Taneja, M.S. Hundal and K.K. Kapoor, One-Pot Synthesis of a-aminophosphonates Catalyzed by Antimony Trichloride Adsorbed on Alumina, Tetrahedron Lett., 49, 2208 (2008); https://doi.org/10.1016/j.tetlet.2008.02.047
  22. A.K. Bhattacharya and K.C. Rana, Amberlite-IR 120 Catalyzed Three-Component Synthesis of A-aminophosphonates in One-Pot, Tetrahedron Lett., 49, 2598 (2008); https://doi.org/10.1016/j.tetlet.2008.02.102
  23. S. Sobhani, E. Safaei, M. Asadi and F. Jalili, An Eco-friendly Procedure for the Efficient Synthesis of Dialkyl a-aminophosphonates in Aqueous Media, J. Organomet. Chem., 693, 3313 (2008); https://doi.org/10.1016/j.jorganchem.2008.07.037
  24. P. Anastas and N. Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
  25. Y.B. Huang, M. Shen, X. Wang, P. Huang, R. Chen, Z.J. Lin and R. Cao, Water-Medium C–H Activation Over a Hydrophobic Perfluoro Alkane-Decorated Metal-Organic Framework Platform, J. Catal., 333, 1 (2016); https://doi.org/10.1016/j.jcat.2015.10.012
  26. R. Juarez, P. Concepcion, A. Corma and H. Garcia, Ceria Nanoparticles as Heterogeneous Catalyst for CO2 Fixation by w-Aminoalcohols, Chem. Commun. 46, 4181 (2010); https://doi.org/10.1039/c001955k
  27. R. Juarez, A. Corma and H. Garcia, Gold Nanoparticles Promote the Catalytic Activity of Ceria for the Transalkylation of Propylene Carbonate to Dimethyl Carbonate, Green Chem., 11, 949 (2009); https://doi.org/10.1039/b902850a
  28. R. Gallardo-Macias and K. Nakayama, Tin(II) Compounds as Catalysts for the Kabachnik-Fields Reaction under Solvent-Free Conditions: Facile Synthesis of a-Aminophosphonates, Synthesis, 57 (2010); https://doi.org/10.1055/s-0029-1217091
  29. A. Heydari, H. Hamadi and M. Pourayoubi, A New One-Pot Synthesis of a-Amino Phosphonates Catalyzed by H3PW12O40, Catal. Commun., 8, 1224 (2007); https://doi.org/10.1016/j.catcom.2006.11.008
  30. P.V. Shinde, A.H. Kategaonkar, B.B. Shingate and M.S. Shingare, An Organocatalyzed Facile and Rapid Access to a-Hydroxy and a-Amino Phosphonates under Conventional/Ultrasound Technique, Tetrahedron Lett., 52, 2889 (2011); https://doi.org/10.1016/j.tetlet.2011.03.138
  31. S.M. Agawane and J.M. Nagarkar, Nano Ceria Catalyzed Synthesis of a-Aminophosphonates under Ultrasonication, Tetrahedron Lett., 52, 3499 (2011); https://doi.org/10.1016/j.tetlet.2011.04.112
  32. D. Ravikumar, S. Mohan, C. Subramanyam and K.P. Rao, Solvent-Free Sonochemical Kabachnic Fields Reaction to Synthesize Some New a-Aminophosphonates Catalyzed by Nano-BF3·SiO2, Phosphorus, Sulfur, Silicon Rel. Elem., 193, 400 (2018); https://doi.org/10.1080/10426507.2018.1424163
  33. N. Cotelle, J.L. Bemier, J.P. Catteau, J. Pommery, J.C. Wallet and E.M. Gaydou, Antioxidant Properties of Hydroxy-Flavones, Free Radic. Biol. Med., 20, 35 (1996); https://doi.org/10.1016/0891-5849(95)02014-4
  34. J. Robak and R.J. Gryglewski, Flavonoids are Scavengers of Superoxide Anions, Biochem. Pharmacol., 37, 837 (1988); https://doi.org/10.1016/0006-2952(88)90169-4
  35. L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.S. Wishnok and S.R. Tannenbaum, Analysis of Nitrate, Nitrite and Nitrate in Biological Fluids, Anal. Biochem., 126, 131 (1982); https://doi.org/10.1016/0003-2697(82)90118-x
  36. L. Marcocci, L. Packer, M. T. Droy-Lefaix, A. Sekaki and M. Gardès-Albert. Antioxidant action of Ginkgo biloba extracts EGB 761, Methods Enzymol., 234, 462 (1994); https://doi.org/10.1016/0076-6879(94)34117-6