Main Article Content

Abstract

The plant contains different important phytochemicals that can be used as potential medicine for various ailments. This work describes a green synthesis approach for synthesizing copper oxide and selenium nanoparticles from Punica granatum leaves extract. The  formation of CuNPs & SeNPs was monitored by UV-Visible, FT-IR, zeta, XRD and SEM techniques. The FT-IR spectra confirmed the presence of functional groups which are associated with the bioactive molecules, whereas the suspension solution confirmed the formation of SeNPs and CuNPs as done by UV analysis. X-ray diffraction (XRD) study exhibits the amorphous nature for both SeNPs and CuNPs. The morphology and crystalline phase of the metal nanoparticles were determined using scanning electron microscopy (SEM). The CuNPs showed potent antibacterial activity whereas SeNPs showed considerable activity against Gram-negative bacteria  (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus). Both SeNPs and CuNPs exhibit efficient  rhodamine B dye degradation in the presence of UV or sunlight. However, CuNPs have better catalytic degradation ability for  rhodamine B dye as compared to SeNPs. 

Keywords

Copper oxide Selenium Nanoparticles Punica granatum Copper Nanomaterials Antibacterial activity Photocatalytic activity

Article Details

How to Cite
Alexander, P. S., Chandrasekar, N., & Rajesh, T. P. (2021). Fabrication and Analysis of Selenium and Copper Nanoparticles Integrated with Biomaterial for Antibacterial Evaluation. Asian Journal of Organic & Medicinal Chemistry, 6(4), 330–335. https://doi.org/10.14233/ajomc.2021.AJOMC-P305

References

  1. E.A. Mohamed, Green Synthesis of Copper & Copper Oxide Nanoparticles using the Extract of Seedless Dates, Heliyon, 6, e03123 (2020);
  2. https://doi.org/10.1016/j.heliyon.2019.e03123
  3. M. Gondwal and G. Joshi Nee Pant, Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles using Cassia
  4. occidentalis, Int. J. Biomater., 2018, 1 (2018); https://doi.org/10.1155/2018/6735426
  5. T.B. Vidovix, H.B. Quesada, E.F.D. Januário, R. Bergamasco and A.M.S. Vieira, Green Synthesis of Copper Oxide Nanoparticles using Punica Granatum Leaf Extract Applied to the Removal of Methylene Blue, Mater. Lett., 257, 126685 (2019); https://doi.org/10.1016/j.matlet.2019.126685
  6. N.M. Shafik and M.M. El Batsh, Protective Effects of Combined Selenium and Punica granatum Treatment on Some Inflammatory and Oxidative Stress Markers in Arsenic-Induced Hepatotoxicity in Rats, Biol. Trace Elem. Res., 169, 121 (2016);
  7. https://doi.org/10.1007/s12011-015-0397-1
  8. A. Khurana, S. Tekula, M.A. Saifi, P. Venkatesh and C. Godugu, Therapeutic Applications of Selenium Nanoparticles, Biomed. Pharmacother., 111, 802 (2019); https://doi.org/10.1016/j.biopha.2018.12.146
  9. J. Telegdi, L. Trif and L. Románszki, in eds.: M.F. Montemor, Smart Anti-biofouling Composite Coatings for Naval Applications, In: Smart
  10. Composite Coatings and Membranes Transport, Structural, Environmental and Energy Applications, Woodhead Publishing Series in composites Science and Engineering, Chap. 5, pp. 123–155 (2016); https://doi.org/10.1016/B978-1-78242-283-9.00005-1
  11. D. Singh, A.M. Deobald, L.R.S. Camargo, G. Tabarelli, O.E.D. Rodrigues and A.L. Braga, An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se0 or Te0/Base, Org. Lett., 12, 3288 (2010); https://doi.org/10.1021/ol100558b
  12. V. Alagesan and S. Venugopal, Green Synthesis of Selenium Nanoparticle Using Leaves Extract of Withania somnifera and Its Biological applications and Photocatalytic Activities, Bionanoscience, 9, 105 (2019); https://doi.org/10.1007/s12668-018-0566-8
  13. L. Gunti, R.S. Dass and N.K. Kalagatur, Phytofabrication of Selenium Nanoparticles from Emblica officinalis Fruit Extract and Exploring its
  14. Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility, Front. Microbiol., 10, 931 (2019);
  15. https://doi.org/10.3389/fmicb.2019.00931
  16. E.R. Silva, O. Ferreira, P.A. Ramalho, N.F. Azevedo, R. Bayón, A. Igartua, J.C. Bordado and M.J. Calhorda, Eco-Friendly Non-biociderelease
  17. Coatings for Marine Biofouling Prevention, Sci. Total Environ., 650, 2499 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.010
  18. A.C. Ciubotariu, L. Benea and P. Ponthiaux, Corrosion Resistance of Zinc–Resin Hybrid Coatings Obtained by Electro-Codeposition, Arab.
  19. J. Chem., 12, 4427 (2019); https://doi.org/10.1016/j.arabjc.2016.07.002
  20. P.Y. Chan, Rusi and S.R. Majid, RGO-Wrapped MnO2 Composite Electrode for Supercapacitor Application, Solid State Ion., 262, 226
  21. (2014); https://doi.org/10.1016/j.ssi.2013.10.005
  22. M.S. Selim, M.A. Shenashen, S.A. El-Safty, S.A. Higazy, M.M. Selim, H. Isago and A. Elmarakbi, Recent Progress in Marine Foul-Release
  23. Polymeric Nanocomposite Coatings, Prog. Mater. Sci., 87, 1 (2017); https://doi.org/10.1016/j.pmatsci.2017.02.001
  24. L.K. Adams, D.Y. Lyon and P.J.J. Alvarez, Comparative Eco-Toxicity of Nanoscale TiO2, SiO2 and ZnO Water Suspensions, Water Res., 40,
  25. (2006); https://doi.org/10.1016/j.watres.2006.08.004
  26. A. Tadjarodi, O. Akhavan and K. Bijanzad, Photocatalytic Activity of CuO Nanoparticles Incorporated in Mesoporous Structure Prepared
  27. from bis(2-Aminonicotinato)copper(II) Microflakes, Trans. Nonferrous Met. Soc. China, 25, 3634 (2015); https://doi.org/10.1016/S10036326(15)64004-3
  28. A.P. Steffi, N. Prakash and C. Narendhar, Synthesis and Characterization of Binary Nanocomposite of (Fe3O4/HAp) Nanocrystal, AIP Conf. Proc., 2270, 110036 (2020); https://doi.org/10.1063/5.0019787
  29. N. Prakash, C. Narendhar, E. Muthusankar and D. Ragupathy, Supercapacitive Performance of Surfactants Wrapped KIT-6/MCM-48 Templates Based Mesoporous Co3O4, J. Nanoelectron. Optoelectron., 14, 1759 (2019); https://doi.org/10.1166/jno.2019.2686