Main Article Content
Abstract
The plant contains different important phytochemicals that can be used as potential medicine for various ailments. This work describes a green synthesis approach for synthesizing copper oxide and selenium nanoparticles from Punica granatum leaves extract. The formation of CuNPs & SeNPs was monitored by UV-Visible, FT-IR, zeta, XRD and SEM techniques. The FT-IR spectra confirmed the presence of functional groups which are associated with the bioactive molecules, whereas the suspension solution confirmed the formation of SeNPs and CuNPs as done by UV analysis. X-ray diffraction (XRD) study exhibits the amorphous nature for both SeNPs and CuNPs. The morphology and crystalline phase of the metal nanoparticles were determined using scanning electron microscopy (SEM). The CuNPs showed potent antibacterial activity whereas SeNPs showed considerable activity against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus). Both SeNPs and CuNPs exhibit efficient rhodamine B dye degradation in the presence of UV or sunlight. However, CuNPs have better catalytic degradation ability for rhodamine B dye as compared to SeNPs.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- E.A. Mohamed, Green Synthesis of Copper & Copper Oxide Nanoparticles using the Extract of Seedless Dates, Heliyon, 6, e03123 (2020);
- https://doi.org/10.1016/j.heliyon.2019.e03123
- M. Gondwal and G. Joshi Nee Pant, Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles using Cassia
- occidentalis, Int. J. Biomater., 2018, 1 (2018); https://doi.org/10.1155/2018/6735426
- T.B. Vidovix, H.B. Quesada, E.F.D. Januário, R. Bergamasco and A.M.S. Vieira, Green Synthesis of Copper Oxide Nanoparticles using Punica Granatum Leaf Extract Applied to the Removal of Methylene Blue, Mater. Lett., 257, 126685 (2019); https://doi.org/10.1016/j.matlet.2019.126685
- N.M. Shafik and M.M. El Batsh, Protective Effects of Combined Selenium and Punica granatum Treatment on Some Inflammatory and Oxidative Stress Markers in Arsenic-Induced Hepatotoxicity in Rats, Biol. Trace Elem. Res., 169, 121 (2016);
- https://doi.org/10.1007/s12011-015-0397-1
- A. Khurana, S. Tekula, M.A. Saifi, P. Venkatesh and C. Godugu, Therapeutic Applications of Selenium Nanoparticles, Biomed. Pharmacother., 111, 802 (2019); https://doi.org/10.1016/j.biopha.2018.12.146
- J. Telegdi, L. Trif and L. Románszki, in eds.: M.F. Montemor, Smart Anti-biofouling Composite Coatings for Naval Applications, In: Smart
- Composite Coatings and Membranes Transport, Structural, Environmental and Energy Applications, Woodhead Publishing Series in composites Science and Engineering, Chap. 5, pp. 123–155 (2016); https://doi.org/10.1016/B978-1-78242-283-9.00005-1
- D. Singh, A.M. Deobald, L.R.S. Camargo, G. Tabarelli, O.E.D. Rodrigues and A.L. Braga, An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se0 or Te0/Base, Org. Lett., 12, 3288 (2010); https://doi.org/10.1021/ol100558b
- V. Alagesan and S. Venugopal, Green Synthesis of Selenium Nanoparticle Using Leaves Extract of Withania somnifera and Its Biological applications and Photocatalytic Activities, Bionanoscience, 9, 105 (2019); https://doi.org/10.1007/s12668-018-0566-8
- L. Gunti, R.S. Dass and N.K. Kalagatur, Phytofabrication of Selenium Nanoparticles from Emblica officinalis Fruit Extract and Exploring its
- Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility, Front. Microbiol., 10, 931 (2019);
- https://doi.org/10.3389/fmicb.2019.00931
- E.R. Silva, O. Ferreira, P.A. Ramalho, N.F. Azevedo, R. Bayón, A. Igartua, J.C. Bordado and M.J. Calhorda, Eco-Friendly Non-biociderelease
- Coatings for Marine Biofouling Prevention, Sci. Total Environ., 650, 2499 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.010
- A.C. Ciubotariu, L. Benea and P. Ponthiaux, Corrosion Resistance of Zinc–Resin Hybrid Coatings Obtained by Electro-Codeposition, Arab.
- J. Chem., 12, 4427 (2019); https://doi.org/10.1016/j.arabjc.2016.07.002
- P.Y. Chan, Rusi and S.R. Majid, RGO-Wrapped MnO2 Composite Electrode for Supercapacitor Application, Solid State Ion., 262, 226
- (2014); https://doi.org/10.1016/j.ssi.2013.10.005
- M.S. Selim, M.A. Shenashen, S.A. El-Safty, S.A. Higazy, M.M. Selim, H. Isago and A. Elmarakbi, Recent Progress in Marine Foul-Release
- Polymeric Nanocomposite Coatings, Prog. Mater. Sci., 87, 1 (2017); https://doi.org/10.1016/j.pmatsci.2017.02.001
- L.K. Adams, D.Y. Lyon and P.J.J. Alvarez, Comparative Eco-Toxicity of Nanoscale TiO2, SiO2 and ZnO Water Suspensions, Water Res., 40,
- (2006); https://doi.org/10.1016/j.watres.2006.08.004
- A. Tadjarodi, O. Akhavan and K. Bijanzad, Photocatalytic Activity of CuO Nanoparticles Incorporated in Mesoporous Structure Prepared
- from bis(2-Aminonicotinato)copper(II) Microflakes, Trans. Nonferrous Met. Soc. China, 25, 3634 (2015); https://doi.org/10.1016/S10036326(15)64004-3
- A.P. Steffi, N. Prakash and C. Narendhar, Synthesis and Characterization of Binary Nanocomposite of (Fe3O4/HAp) Nanocrystal, AIP Conf. Proc., 2270, 110036 (2020); https://doi.org/10.1063/5.0019787
- N. Prakash, C. Narendhar, E. Muthusankar and D. Ragupathy, Supercapacitive Performance of Surfactants Wrapped KIT-6/MCM-48 Templates Based Mesoporous Co3O4, J. Nanoelectron. Optoelectron., 14, 1759 (2019); https://doi.org/10.1166/jno.2019.2686
References
E.A. Mohamed, Green Synthesis of Copper & Copper Oxide Nanoparticles using the Extract of Seedless Dates, Heliyon, 6, e03123 (2020);
https://doi.org/10.1016/j.heliyon.2019.e03123
M. Gondwal and G. Joshi Nee Pant, Synthesis and Catalytic and Biological Activities of Silver and Copper Nanoparticles using Cassia
occidentalis, Int. J. Biomater., 2018, 1 (2018); https://doi.org/10.1155/2018/6735426
T.B. Vidovix, H.B. Quesada, E.F.D. Januário, R. Bergamasco and A.M.S. Vieira, Green Synthesis of Copper Oxide Nanoparticles using Punica Granatum Leaf Extract Applied to the Removal of Methylene Blue, Mater. Lett., 257, 126685 (2019); https://doi.org/10.1016/j.matlet.2019.126685
N.M. Shafik and M.M. El Batsh, Protective Effects of Combined Selenium and Punica granatum Treatment on Some Inflammatory and Oxidative Stress Markers in Arsenic-Induced Hepatotoxicity in Rats, Biol. Trace Elem. Res., 169, 121 (2016);
https://doi.org/10.1007/s12011-015-0397-1
A. Khurana, S. Tekula, M.A. Saifi, P. Venkatesh and C. Godugu, Therapeutic Applications of Selenium Nanoparticles, Biomed. Pharmacother., 111, 802 (2019); https://doi.org/10.1016/j.biopha.2018.12.146
J. Telegdi, L. Trif and L. Románszki, in eds.: M.F. Montemor, Smart Anti-biofouling Composite Coatings for Naval Applications, In: Smart
Composite Coatings and Membranes Transport, Structural, Environmental and Energy Applications, Woodhead Publishing Series in composites Science and Engineering, Chap. 5, pp. 123–155 (2016); https://doi.org/10.1016/B978-1-78242-283-9.00005-1
D. Singh, A.M. Deobald, L.R.S. Camargo, G. Tabarelli, O.E.D. Rodrigues and A.L. Braga, An Efficient One-Pot Synthesis of Symmetrical Diselenides or Ditellurides from Halides with CuO Nanopowder/Se0 or Te0/Base, Org. Lett., 12, 3288 (2010); https://doi.org/10.1021/ol100558b
V. Alagesan and S. Venugopal, Green Synthesis of Selenium Nanoparticle Using Leaves Extract of Withania somnifera and Its Biological applications and Photocatalytic Activities, Bionanoscience, 9, 105 (2019); https://doi.org/10.1007/s12668-018-0566-8
L. Gunti, R.S. Dass and N.K. Kalagatur, Phytofabrication of Selenium Nanoparticles from Emblica officinalis Fruit Extract and Exploring its
Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility, Front. Microbiol., 10, 931 (2019);
https://doi.org/10.3389/fmicb.2019.00931
E.R. Silva, O. Ferreira, P.A. Ramalho, N.F. Azevedo, R. Bayón, A. Igartua, J.C. Bordado and M.J. Calhorda, Eco-Friendly Non-biociderelease
Coatings for Marine Biofouling Prevention, Sci. Total Environ., 650, 2499 (2019); https://doi.org/10.1016/j.scitotenv.2018.10.010
A.C. Ciubotariu, L. Benea and P. Ponthiaux, Corrosion Resistance of Zinc–Resin Hybrid Coatings Obtained by Electro-Codeposition, Arab.
J. Chem., 12, 4427 (2019); https://doi.org/10.1016/j.arabjc.2016.07.002
P.Y. Chan, Rusi and S.R. Majid, RGO-Wrapped MnO2 Composite Electrode for Supercapacitor Application, Solid State Ion., 262, 226
(2014); https://doi.org/10.1016/j.ssi.2013.10.005
M.S. Selim, M.A. Shenashen, S.A. El-Safty, S.A. Higazy, M.M. Selim, H. Isago and A. Elmarakbi, Recent Progress in Marine Foul-Release
Polymeric Nanocomposite Coatings, Prog. Mater. Sci., 87, 1 (2017); https://doi.org/10.1016/j.pmatsci.2017.02.001
L.K. Adams, D.Y. Lyon and P.J.J. Alvarez, Comparative Eco-Toxicity of Nanoscale TiO2, SiO2 and ZnO Water Suspensions, Water Res., 40,
(2006); https://doi.org/10.1016/j.watres.2006.08.004
A. Tadjarodi, O. Akhavan and K. Bijanzad, Photocatalytic Activity of CuO Nanoparticles Incorporated in Mesoporous Structure Prepared
from bis(2-Aminonicotinato)copper(II) Microflakes, Trans. Nonferrous Met. Soc. China, 25, 3634 (2015); https://doi.org/10.1016/S10036326(15)64004-3
A.P. Steffi, N. Prakash and C. Narendhar, Synthesis and Characterization of Binary Nanocomposite of (Fe3O4/HAp) Nanocrystal, AIP Conf. Proc., 2270, 110036 (2020); https://doi.org/10.1063/5.0019787
N. Prakash, C. Narendhar, E. Muthusankar and D. Ragupathy, Supercapacitive Performance of Surfactants Wrapped KIT-6/MCM-48 Templates Based Mesoporous Co3O4, J. Nanoelectron. Optoelectron., 14, 1759 (2019); https://doi.org/10.1166/jno.2019.2686