Main Article Content

Abstract

A sustainable, multi-component reaction has been established for the synthesis of pyranopyrazole in an aqueous medium utilizing  Cu(OTf)2 as catalyst. This eco-friendly synthesis process utilizes aromatic aldehydes, malonitrile, hydrazine hydrate and ethyl  acetoacetate as substrates to obtain pyranopyrazole derivatives. The method is characterized by its mild reaction conditions, cost- effectiveness, high efficiency, energy savings and functional group tolerance, producing the target compounds in good to excellent  yields. Copper(II) triflate [Cu(OTf)2] demonstrates high catalytic efficacy without generating side products and can be easily recovered  post-reaction without complex procedures. The structure of the synthesized pyranopyrazole derivatives were confirmed using  spectroscopic analysis. 

Keywords

Pyranopyrazoles Copper(II) triflate Aromatic aldehyde Malonitrile Ethyl acetoacetate Hydrazine hydrate

Article Details

How to Cite
Asatkar, A., & Pahare, S. (2021). A Green and Efficient Sythesis of Pyranopyrazole Derivatives Catalyzed by Copper(II) triflate in Aqueous Medium. Asian Journal of Organic & Medicinal Chemistry, 6(4), 322–326. Retrieved from https://asianpubs.org/index.php/ajomc/article/view/33219

References

  1. L.D. Quin and J.A. Tyrell, Fundamentals of Heterocyclic Chemistry: Importance in Nature and in the Synthesis of Pharmaceuticals, Wiley (2010).
  2. R. Dua, S. Shrivastava, S.K. Sonwane and S.K. Srivastava, Pharmacological Significance of Synthetic Heterocycles Scaffold: A Review, Adv. Biol. Res., 5, 120 (2011).
  3. P.T. Anastas and E.S. Beach, Green Chemistry: The Emergence of a Transformative Framework, Green Chem. Lett. Rev., 1, 9 (2007); https://doi.org/10.1080/17518250701882441
  4. W.M. Nelson, Green Solvents for Chemistry: Perspectives and Practice, Oxford University Press (2003).
  5. G.J. Ruiz-Mercado, A. Carvalho and H. Cabezas, Using Green Chemistry and Engineering Principles to Design, Assess and Retrofit Chemical Processes for Sustainability, ACS Sustain. Chem. Eng., 4, 6208 (2016); https://doi.org/10.1021/acssuschemeng.6b02200
  6. J. Song and B. Han, Green Chemistry: A Tool for the Sustainable Development of the Chemical Industry Natl. Sci. Rev., 2, 255 (2015); https://doi.org/10.1093/nsr/nwu076
  7. M. Bihani, P.P. Bora, G. Bez and H. Askari, Amberlyst A21 Catalyzed Chromatography-Free Method for Multicomponent Synthesis of Dihydropyrano[2,3-c]pyrazoles in Ethanol, ACS Sustain. Chem. Eng., 1, 440 (2013); https://doi.org/10.1021/sc300173z
  8. D.S. Fischer, G.M. Allan, C. Bubert, N. Vicker, A. Smith, H.J. Tutill, A. Purohit, L. Wood, G. Packham and M.F. Maho, E-Ring Modified Steroids as Novel Potent Inhibitors of 17ß-Hydroxysteroid Dehydrogenase Type 1, J. Med. Chem., 48, 5749 (2005); https://doi.org/10.1021/jm050348a
  9. J.L. Wang, D. Liu, Z.J. Zhang, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri and Z. Huang, Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of
  10. tumor cells, Proc. Natl. Acad. Sci., 97, 7124 (2000); https://doi.org/10.1073/pnas.97.13.7124
  11. M.M.F. Ismail, N.M. Khalifa, H.H. Fahmy, E.S. Nossier and M.M. Abdulla, Design, Docking, and Synthesis of Some New Pyrazoline and Pyranopyrazole Derivatives as Anti-inflammatory Agents, J. Heterocycl. Chem., 51, 450 (2014); https://doi.org/10.1002/jhet.1757
  12. G.M. Reddy, J.R. Garcia, G.V. Zyryanov, G. Sravya and N.B. Reddy, Pyranopyrazoles as Efficient Antimicrobial Agents: Green, One Pot and Multicomponent Approach, Bioorg. Chem., 82, 324 (2019); https://doi.org/10.1016/j.bioorg.2018.09.035
  13. A. Kumar, P. Lohan, D.K. Aneja, G.K. Gupta, D. Kaushik and O. Prakash, Design, Synthesis, Computational and Biological Evaluation of Some
  14. New Hydrazino Derivatives of DHA and Pyranopyrazoles, Eur. J. Med. Chem., 50, 81 (2012); https://doi.org/10.1016/j.ejmech.2012.01.042
  15. S.A.M. Abdelgaleil and Y.M. Badawy, Herbicidal, Insecticidal and Structure-Activity Relationship Studies on Pyranopyrazole and Oxinobispyrazole Derivatives, Alexand. Sci. Exchange J., 37, 572 (2016); https://doi.org/10.21608/asejaiqjsae.2016.2594
  16. G.M. Reddy, A.K. Kumari, V.H. Reddy and J.R. Garcia, Novel pyranopyrazole Derivatives Comprising a Benzoxazole Core as Antimicrobial Inhibitors: Design, Synthesis, Microbial Resistance and Machine Aided Results, Bioorg. Chem., 100, 103908 (2020); https://doi.org/10.1016/j.bioorg.2020.103908
  17. D.M. D'Souza and T.J.J. Müller, Multi-Component Syntheses of Heterocycles by Transition-metal Catalysis, Chem. Soc. Rev., 36, 1095
  18. (2007); https://doi.org/10.1039/B608235C
  19. P.V.G. Reddy, B.R.P. Reddy, M.V.K. Reddy, K.R. Reddy, N.P. Shetti, T.A. Saleh and T.M. Aminabhavi, A Review on Multicomponent Reactions Catalysed by Zero-Dimensional/One-Dimensional Titanium Dioxide (TiO2) Nanomaterials: Promising Green Methodologies in Organic Chemistry, J. Environ. Manag., 279, 111603 (2021); https://doi.org/10.1016/j.jenvman.2020.111603
  20. G. Bosica, K. Baldacchino, R. Abdilla and R. De Nittis, Green Organic Synthesis via Multicomponent Reactions, Xjenza Online, Sci. J. Malta Chamber Scient., 9 (Special issue), 173 (2021); https://doi.org/10.7423/XJENZA.2021.3.10
  21. O. Ghashghaei, F. Seghetti and R. Lavilla, Selectivity in Multiple Multicomponent Reactions: Types and Synthetic Applications, Beilstein J. Org. Chem., 15, 521 (2019); https://doi.org/10.3762/bjoc.15.46
  22. R.A. Sheldon, Atom Efficiency and Catalysis in Organic Synthesis, Pure Appl. Chem., 72, 1233 (2000); https://doi.org/10.1351/pac200072071233
  23. A. Shaabani, A.H. Sarvary, S. Rezayan and S. Keshipour, Synthesis of Fully Substituted Pyrano[2,3-c]pyrazole Derivatives via a Multicomponent Reaction of Isocyanides, Tetrahedron, 65, 3492 (2009); https://doi.org/10.1016/j.tet.2009.02.035