Main Article Content

Abstract

In present strudy, the synthesis and characterization of monocationic 1,3-tetradecylimidazolium; [(C14)2Im]Br and tricationic benzene centered tris-tetradecyl/hexadecyl imidazolium bromide salts; i.e. [(C14)3C6H3Im]Br3 and [(C16)3C6H3ImBr]Br3 is reported. The stabilizer role of imidazolium salts to prepare silver nanoparticles (AgNPs) via chemical reduction method was investigated. To understand the reaction medium effect on the size and morphology control of AgNPs, monophasic (aqueous medium) and biphasic (DCM/H2O) approaches were applied. The morphology control was noticed for AgNPs protected with [(C14)3C6H3Im]Br3 (show sphere like morphology) and [(C14)2Im]Br (show dendritic structures) via biphasic approach. A clear variation in the size and morphology of AgNPs was noticed by varying the type of stabilizers and reaction medium. It was also observed that AgNPs were formed and stabilized only in aqueous medium in both approaches, thus it is assumed that AgNPs surfaces were protected by imidazolium salts with bilayer fashion. Anticancer activity of imidazolium salts was performed by MTT assay against HeLa cancer cell lines. The result shows that cytotoxic activity of tricationic [(C14)3C6H3Im]Br3 was more potent than that of monocationic [(C14)2Im]Br. The outcome suggests that there is an urgent need to develop new polycationic imidazolium salts for various chemical and medicinal applications.

Keywords

Imidazolium Stabilizers Silver nanoparticles Anticancer.

Article Details

How to Cite
Rohini, R., Naresh Reddy, N., Sanjeev, A., Bhaskar, S., & Muralidhar Reddy, P. (2021). Mono and Tri-cationic Imidazolium Salts: Use as Stabilizers for Silver Nanoparticles and Anticancer Study. Asian Journal of Organic & Medicinal Chemistry, 6(3), 167–174. https://doi.org/10.14233/ajomc.2021.AJOMC-P331

References

  1. K. Goossens, K. Lava, C.W. Bielawski and K. Binnemans, Ionic Liquid Crystals: Versatile Materials, Chem. Rev., 116, 4643 (2016); https://doi.org/10.1021/cr400334b
  2. K. Binnemans, Ionic Liquid Crystals, Chem. Rev., 105, 4148 (2005); https://doi.org/10.1021/cr0400919
  3. S.N. Riduan and Y. Zhang, Imidazolium Salts and their Polymeric Materials for Biological Applications, Chem. Soc. Rev., 42, 9055 (2013); https://doi.org/10.1039/c3cs60169b
  4. R. Rohini, C.K. Lee, J.T. Lu and I.J.B. Lin, Symmetrical 1,3-Dialkyl-imidazolium Based Ionic Liquid Crystals, J. Chin. Chem. Soc., 60, 745 (2013); https://doi.org/10.1002/jccs.201200598
  5. S. Wang and X. Wang, Imidazolium Ionic Liquids, Imidazolylidene Heterocyclic Carbenes and Zeolitic Imidazolate Frameworks for CO2 Capture and Photochemical Reduction, Angew. Chem. Int. Ed., 55, 2308 (2016); https://doi.org/10.1002/anie.201507145
  6. I.M. Marrucho, L.C. Branco and L.P.N. Rebelo, Ionic Liquids in Pharmaceutical Applications, Annu. Rev. Chem. Biomol. Eng., 5, 527 (2014); https://doi.org/10.1146/annurev-chembioeng-060713-040024
  7. B. Gopalan, K. Narayanan, Z. Ke, T. Lu, Y. Zhang and L. Zhuo, Therapeutic Effect of a Multi-Targeted Imidazolium Compound in Hepatocellular Carcinoma, Biomaterials, 35, 7479 (2014); https://doi.org/10.1016/j.biomaterials.2014.05.022
  8. L. Palkowski, J. Blaszczynski, A. Skrzypczak, J. Blaszczak, A. Nowaczyk, J. Wroblewska, S. Kozuszko, E. Gospodarek, R. Slowinski and J. Krysinski, Prediction of Antifungal Activity of Gemini Imidazolium Compounds, BioMed Res. Int., 2015, 392326 (2015); https://doi.org/10.1155/2015/392326
  9. M.A. DeBord, M.R. Southerland, P.O. Wagers, K.M. Tiemann, N.K. Robishaw, K.T. Whiddon, M.C. Konopka, C.A. Tessier, L.P. Shriver, S. Paruchuri, D.A. Hunstad, M.J. Panzner and W.J. Youngs, Synthesis, Characterization, in vitro SAR and in vivo Evaluation of N,N¢-bis-naphthylmethyl 2-Alkyl Substituted Imidazolium Salts against NSCLC, Bioorg. Med. Chem. Lett., 27, 764 (2017); https://doi.org/10.1016/j.bmcl.2017.01.035
  10. A. Monge-Marcet, R. Pleixats, X. Cattoën and M.W.C. Man, Imidazolium-Derived Organosilicas for Catalytic Applications, Catal. Sci. Technol., 1, 1544 (2011); https://doi.org/10.1039/c1cy00287b
  11. K.M. Hindi, M.J. Panzner, C.A. Tessier, C.L. Cannon and W.J. Youngs, The Medicinal Applications of Imidazolium Carbene-Metal Complexes, Chem. Rev., 109, 3859 (2009); https://doi.org/10.1021/cr800500u
  12. F. D’Anna and R. Noto, Di- and Tricationic Organic Salts: An Overview of Their Properties and Applications, Eur. J. Org. Chem., 2014, 4201 (2014); https://doi.org/10.1002/ejoc.201301871
  13. R.F.M. Elshaarawy, Z.H. Kheiralla, A.A. Rushdy and C. Janiak, New Water Soluble Bis-imidazolium Salts with a Saldach Scaffold: Synthesis, Characterization and in vitro Cytotoxicity/Bactericidal Studies, Inorg. Chim. Acta, 421, 110 (2014); https://doi.org/10.1016/j.ica.2014.05.029
  14. D. Kumar, A. Chandra and M. Singh, Influence of Imidazolium Ionic Liquids on the Interactions of Human Hemoglobin with DyCl3, ErCl3, and YbCl3 in Aqueous Citric Acid at T = (298.15, 303.15, and 308.15) K and 0.1 MPa, J. Chem. Eng. Data, 62, 665 (2017); https://doi.org/10.1021/acs.jced.6b00695
  15. C. Cagliero, C. Bicchi, C. Cordero, E. Liberto, B. Sgorbini and P. Rubiolo, Room Temperature Ionic Liquids: New GC Stationary Phases with a Novel Selectivity for Flavor And Fragrance Analyses, J. Chromatogr. A, 1268, 130 (2012); https://doi.org/10.1016/j.chroma.2012.10.016
  16. U. More, Z. Vaid, S. Rajput, Y. Kadam and N. Malek, Effect of Imidazolium-based Ionic Liquids on the Aggregation Behaviour of Twin-Tailed Cationic Gemini Surfactant in Aqueous Solution, J. Dispers. Sci. Technol., 38, 393 (2017); https://doi.org/10.1080/01932691.2016.1170610
  17. P. Ganapathi and K. Ganesan, Anti-Bacterial, Catalytic and Docking Behaviours of Novel Di/Trimeric Imidazolium Salts, J. Mol. Liq., 233, 452 (2017); https://doi.org/10.1016/j.molliq.2017.02.078
  18. R.T.W. Huang, R. Rondla, W.J. Wang and I.J.B. Lin, Gemini Imidazolium salts comprising Cl-, BF4-, PF6-, AuCl4- Counterions: Synthesis, Thermotropic Liquid Crystal Study and use of AuCl4- Salt Precursor to AuNPs, J. Mol. Liq., 242, 1285 (2017); https://doi.org/10.1016/j.molliq.2017.07.088
  19. G. Achar, P. Agarwal, K.N. Brinda, J.G. Malecki, R.S. Keri and S. Budagumpi, Ether and Coumarin–Functionalized (benz)Imidazolium Salts and their Silver(I)–N–Heterocyclic Carbene Complexes: Synthesis, Characterization, Crystal Structures and Antimicrobial studies, J. Organomet. Chem., 854, 64 (2018); https://doi.org/10.1016/j.jorganchem.2017.11.005
  20. J. Gonzalez-Alvarez, D. Blanco-Gomis, P. Arias-Abrodo, D. Diaz-Llorente, N. Rios-Lombardia, E. Busto, V. Gotor-Fernandez and M.D. Gutierrez-Alvarez, Characterization of Hexacationic Imidazolium Ionic Liquids as Effective and Highly Stable Gas Chromatography Stationary Phases, J. Sep. Sci., 35, 273 (2012); https://doi.org/10.1002/jssc.201100830
  21. K.V. Axenov and S. Laschat, Thermotropic Ionic Liquid Crystals, Materials, 4, 206 (2011); https://doi.org/10.3390/ma4010206
  22. B. Izmaylov, D. Di Gioia, G. Markova, I. Aloisio, M. Colonna and V. Vasnev, Imidazolium Salts Grafted on Cotton Fibres for Long-term Antimicrobial Activity, React. Funct. Polym., 87, 22 (2015); https://doi.org/10.1016/j.reactfunctpolym.2014.12.007
  23. D.W. Armstrong and E. Wanigasekara, Tetraionic Liquid Salts and Methods of Use Thereof, US Patent 068944 A1, (2011).
  24. N. Sinha, T.T.Y. Tan, E. Peris and F.E. Hahn, High-Fidelity, Narcissistic Self-Sorting in the Synthesis of Organometallic Assemblies from Poly-NHC Ligands, Angew. Chem. Int. Ed., 56, 7393 (2017); https://doi.org/10.1002/anie.201702637
  25. E. Sedghamiz and M. Moosavi, Tricationic Ionic Liquids: Structural and Dynamical Properties via Molecular Dynamics Simulations, J. Phys. Chem. B, 121, 1877 (2017); https://doi.org/10.1021/acs.jpcb.6b10766
  26. S. Ruiz-Botella, P. Vidossich, G. Ujaque, E. Peris and P.D. Beer, Tripodal Halogen Bonding Iodo-Azolium Receptors for Anion Recognition, RSC Adv., 7, 11253 (2017); https://doi.org/10.1039/C6RA28082J
  27. I. Nath, J. Chakraborty and F. Verpoort, Synthesis and Characterization of Sterically Congested Mesityltris(imidazolium) Salts and the Corresp-onding Highly Crystalline Tris-selone Derivatives, ChemistryOpen, 6, 682 (2017); https://doi.org/10.1002/open.201780541
  28. N.N. Al-Mohammed, R.S. Duali Hussen, Y. Alias and Z. Abdullah, Tris-Imidazolium and Benzimidazolium Ionic Liquids: A New Class of Biodegradable Surfactants, RSC Adv., 5, 2869 (2015); https://doi.org/10.1039/C4RA14027C
  29. N. Sinha, F. Roelfes, A. Hepp, C. Mejuto, E. Peris and F.E. Hahn, Synthesis of Nanometer-Sized Cylinder-Like Structures from a 1,3,5-Triphenylbenzene-Bridged Tris-NHC Ligand and AgI, AuI and CuI, Organometallics, 33, 6898 (2014); https://doi.org/10.1021/om500973b
  30. M. Planellas, W. Guo, F. Alonso, M. Yus, A. Shafir, R. Pleixats and T. Parella, Hydrosilylation of Internal Alkynes Catalyzed by Tris- Imidazolium Salt-Stabilized Palladium Nanoparticles, Adv. Synth. Catal., 356, 179 (2014); https://doi.org/10.1002/adsc.201300641
  31. C. Mejuto, G. Guisado-Barrios and E. Peris, Novel Rhodium and Iridium Complexes Coordinated to C3-Symmetric Tris-NHC Ligands Based on a 1,3,5-Triphenylbenzene Core. Electronic and Catalytic Properties, Organometallics, 33, 3205 (2014); https://doi.org/10.1021/om500547g
  32. E. Faggi, R. Porcar, M. Bolte, S.V. Luis, E. Garcia-Verdugo and I. Alfonso, Chiral Imidazolium Receptors for Citrate and Malate: The Importance of the Preorganization, J. Org. Chem., 79, 9141 (2014); https://doi.org/10.1021/jo5014977
  33. B. Roy, A.K. Bar, B. Gole and P.S. Mukherjee, Fluorescent Tris-Imidazolium Sensors for Picric Acid Explosive, J. Org. Chem., 78, 1306 (2013); https://doi.org/10.1021/jo302585a
  34. R. Zhong, Y.N. Wang, X.Q. Guo and X.F. Hou, Effect of Counterions and Central Cores of Tripodal Imidazolium Salts on Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions, J. Organomet. Chem., 696, 1703 (2011); https://doi.org/10.1016/j.jorganchem.2010.12.012
  35. Z. Xu, N.R. Song, J.H. Moon, J.Y. Lee and J. Yoon, Bis- and tris-Naphthoimidazolium Derivatives for the Fluorescent Recognition of ATP and GTP in 100% Aqueous Solution, Org. Biomol. Chem., 9, 8340 (2011); https://doi.org/10.1039/c1ob06344h
  36. A. Rit, T. Pape, A. Hepp and F.E. Hahn, Supramolecular Structures from Polycarbene Ligands and Transition Metal Ions, Organometallics, 30, 334 (2011); https://doi.org/10.1021/om101102j
  37. A.E. Hargrove, S. Nieto, T. Zhang, J.L. Sessler and E.V. Anslyn, Artificial Receptors for the Recognition of Phosphorylated Molecules, Chem. Rev., 111, 6603 (2011); https://doi.org/10.1021/cr100242s
  38. Z. Xu, S.K. Kim and J. Yoon, Revisit to Imidazolium Receptors for the Recognition of Anions: Highlighted Research During 2006–2009, Chem. Soc. Rev., 39, 1457 (2010); https://doi.org/10.1039/b918937h
  39. A. Rit, T. Pape and F.E. Hahn, Self-Assembly of Molecular Cylinders from Polycarbene Ligands and AgI or AuI, J. Am. Chem. Soc., 132, 4572 (2010); https://doi.org/10.1021/ja101490d
  40. C.E. Ellul, G. Reed, M.F. Mahon, S.I. Pascu and M.K. Whittlesey, Tripodal N-Heterocyclic Carbene Complexes of Palladium and Copper: Syntheses, Characterization and Catalytic Activity, Organometallics, 29, 4097 (2010); https://doi.org/10.1021/om100758x
  41. T. Payagala, Y. Zhang, E. Wanigasekara, K. Huang, Z.S. Breitbach, P.S. Sharma, L.M. Sidisky and D.W. Armstrong, Trigonal Tricationic Ionic Liquids: A Generation of Gas Chromatographic Stationary Phases, Anal. Chem., 81, 160 (2009); https://doi.org/10.1021/ac8016949
  42. M. Trilla, R. Pleixats, T. Parella, C. Blanc, P. Dieudonne, Y. Guari and M.W.C. Man, Ionic Liquid Crystals Based on Mesitylene-Containing Bis- and Trisimidazolium Salts, Langmuir, 24, 259 (2008); https://doi.org/10.1021/la702305t
  43. P.S. Sharma, T. Payagala, E. Wanigasekara, A.B. Wijeratne, J. Huang and D.W. Armstrong, Trigonal Tricationic Ionic Liquids: Molecular Engineering of Trications to Control Physicochemical Properties, Chem. Mater., 20, 4182 (2008); https://doi.org/10.1021/cm800830v
  44. C.E. Willans, K.M. Anderson, P.C. Junk, L.J. Barbour and J.W. Steed, A Small tris(Imidazolium) Cage forms an N-Heterocyclic Carbene Complex with Silver(I), Chem. Commun., 3634 (2007); https://doi.org/10.1039/b708692j
  45. N. Alhashimy, D.J. Brougham, J. Howarth, A. Farrell, B. Quilty and K. Nolan, Homochiral Tripodal Imidazolium Receptors: Structural and Anion-Receptor Studies, Tetrahedron Lett., 48, 125 (2007); https://doi.org/10.1016/j.tetlet.2006.10.143
  46. J. Howarth and N.A. Al-Hashimy, A Homochiral Tripodal Receptor with Selectivity for Sodium (R)-2-Aminopropionate over Sodium (S)-2-aminopropionate, Tetrahedron Lett., 42, 5777 (2001); https://doi.org/10.1016/S0040-4039(01)01108-X
  47. K. Sato, S. Arai and T. Yamagishi, A New Tripodal Anion Receptor with C-H···X- hydrogen bonding, Tetrahedron Lett., 40, 5219 (1999); https://doi.org/10.1016/S0040-4039(99)00942-9
  48. R. Rondla, R. Malikanti and M.R. Puchakayala, Thermoreversible Fibrous Hydrogel of Benzene-Centered Tris-dodecylimidazolium Bromide: A Dual Role as Stabilizer and Directing Agent for Silver Dendrites, ChemistrySelect, 4, 8220 (2019); https://doi.org/10.1002/slct.201902028
  49. J. Yang, J.Y. Lee and J.Y. Ying, Phase Transfer and its Applications in Nanotechnology, Chem. Soc. Rev., 40, 1672 (2011); https://doi.org/10.1039/B916790K
  50. A. Venkanna, B. Siva, B. Poornima, P.R. Rao Vadaparthi, K.R. Prasad, K.A. Reddy, G.B.P. Reddy and K.S. Babu, Phytochemical Investigation of Sesquiterpenes from the Fruits of Schisandra chinensis and their Cytotoxic Activity, Fitoterapia, 95, 102 (2014); https://doi.org/10.1016/j.fitote.2014.03.003
  51. W. Youngs, M. Panzner, C. Tessier, M. Deblock, B. Wright, P. Wagers and N. Robishaw, Azoliumand Puriniumsalt Anticancer and Antimicrobal Agents, US Patent 0142307 A1 (2014).