Main Article Content
Abstract
A convenient and efficient synthesis of 1,3-dimethyl-5-benzylidenebarbituric acid derivatives via gold nanoparticles is carried out. The gold nanoparticles were initiated from novel and low-cost goldsmith effluent source using green reducing agent D-glucose. By mediating autoclave at 121 ºC and 15 lb/cm2 pressure, these particles were further uniformly synthesized by using microwave radiation. The catalyst was analyzed using UV, IR and scanning electron microscopic techniques. Synthesized 1,3-dimethyl-5-benzylidene-barbituric acid was assayed to study its inhibitory action against TAU protein.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- K.M. Khan, M. Khan, M. Ali, M. Taha, A. Hameed, S. Ali, S. Perveen and M.I. Choudhary, Synthesis and DPPH Radical Scavenging Activity of 5-Arylidene-N,N-dimethylbarbiturates, Med. Chem., 7, 231 (2011); https://doi.org/10.2174/157340611795564231
- N. Shafiq, U. Arshad, G. Zarren, S. Parveen, I. Javed and A. Ashraf, A Comprehensive Review: Bio-Potential of Barbituric Acid and its Analogues, Curr. Org. Chem., 24, 129 (2020); https://doi.org/10.2174/1385272824666200110094457
- K.M. Khan, M. Khan, A. Ahmad, A. Irshad, L.B.S. Kardono, F. Rahim, S.M. Haider, S. Ahmed and S. Parveen, Antibacterial and Antifungal Activities of 5-Arylidene-N,N-Dimethylbarbiturates Derivatives, J. Chem. Soc. Pak., 36, 1153 (2014).
- J.K. Rajput and G. Kaur, CoFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for “Click” Synthesis of Arylidene Barbituric Acid Derivatives at Room Temperature, Chin. J. Catal., 34, 1697 (2013); https://doi.org/10.1016/S1872-2067(12)60646-9
- D. Thetford, A.P. Chorlton and J. Hardman, Synthesis and Properties of Some Polycyclic Barbiturate Pigments, Dyes Pigments, 59, 185 (2003); https://doi.org/10.1016/S0143-7208(03)00104-9
- K.P. Stahmann, J.L. Revuelta and H. Seulberger, Three Biotechnical Processes using Ashbya gossypii, Candida famata or Bacillus subtilis Compete with Chemical Riboflavin Production, Appl. Microbiol. Biotechnol., 53, 509 (2000); https://doi.org/10.1007/s002530051649
- D. Zhang, X.-L. Ma, Y. Gu, H. Huang and G.-W. Zhang, Green Synthesis of Metallic Nanoparticles and their Potential Applications to Treat Cancer, Front. Chem., 8, 799 (2020); https://doi.org/10.3389/fchem.2020.00799
- B.S. Takale, M. Bao and Y. Yamamoto, Gold Nanoparticle (AuNPs) and Gold Nanopore (AuNPore) Catalysts in Organic Synthesis, Org. Biomol. Chem., 12, 2005 (2014); https://doi.org/10.1039/C3OB42207K
- M.-C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramole-cular Chemistry, Quantum-Size-Related Properties and Applications toward Biology, Catalysis and Nanotechnology, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+
- A. Corma and H. Garcia, Supported Gold Nanoparticles as Catalysts for Organic Reactions, Chem. Soc. Rev., 37, 2096 (2008); https://doi.org/10.1039/b707314n
- A. Abad, A. Corma and H. Garcia, Bridging the Gap Between Homogen-eous and Heterogeneous Gold Catalysis: Supported Gold Nanoparticles as Heterogeneous Catalysts for the Benzannulation Reaction, Top. Catal., 44, 237 (2007); https://doi.org/10.1007/s11244-007-0296-6
- C. Wang, L. Chen and Z. Qi, One-Pot Synthesis of Gold Nanoparticles Embedded in Silica for Cyclohexane Oxidation, Catal. Sci. Technol., 3, 1123 (2013); https://doi.org/10.1039/c2cy20692g
- H.-U. Blaser, H. Steiner and M. Studer, Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update, ChemCatChem, 1, 210 (2009); https://doi.org/10.1002/cctc.200900129
- K. Layek, H. Maheswaran and M.L. Kantam, Ullmann Coupling of Aryl Iodides Catalyzed by Gold Nanoparticles Stabilized on Nanocrystalline Magnesium Oxide, Catal. Sci. Technol., 3, 1147 (2013); https://doi.org/10.1039/c3cy20826e
- N.-H.T. Nguyen, P.-P.T. Nguyen, T.-D.T. Nguyen, M.T. Tran, T.-N. Thi Huynh and P.H. Tran, Au Nanorod: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via the Multicom-ponent Biginelli Reaction., Chemistry Select, 2, 3932 (2017); https://doi.org/10.1002/slct.201700533
- N.D. Nguyen, V.P. Dang, A.Q. Le and Q.H. Nguyen, Electron beam/g-Ray Irradiation Synthesis of Gold Nanoparticles and Investigation of Antioxidant Activity, Adv. Nat. Sci. Nanosci. Nanotechnol., 5, 045002 (2014); https://doi.org/10.1088/2043-6262/5/4/045002
- Y. Zhou, C.Y. Wang, Y.R. Zhu and Z.Y. Chen, A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature, Chem. Mater., 11, 2310 (1999); https://doi.org/10.1021/cm990315h
- S.R. Makhsin, K.A. Razak, R. Noordin, N.D. Zakaria and T.S. Chun, The Effects Of Size And Synthesis Methods Of Gold Nanoparticle-Conjugated MaHIgG4 for use in an Immunochromatographic Strip Test to Detect Brugian Filariasis, Nanotechnology, 23, 495719 (2012); https://doi.org/10.1088/0957-4484/23/49/495719
- M. Noruzi, D. Zare and D. Davoodi, A Rapid Biosynthesis Route for the Preparation of Gold Nanoparticles by Aqueous Extract of Cypress Leaves at Room Temperature, Spectrochim. Acta A Mol. Biomol. Spectrosc., 94, 84 (2012); https://doi.org/10.1016/j.saa.2012.03.041
- K.B. Narayanan and N. Sakthivel, Phytosynthesis of Gold Nanoparticles using Leaf Extract of Coleus amboinicus Lour, Mater. Charact., 61, 1232 (2010); https://doi.org/10.1016/j.matchar.2010.08.003
- X. Zhang, Q. Guo and D. Cui, Recent Advances in Nanotechnology Applied to Biosensors, Sensors, 9, 1033 (2009); https://doi.org/10.3390/s90201033
- A.K. Augustine, V.P.N. Nampoori and M. Kailasnath, Rapid Synthesize of Gold Nanoparticles by Microwave Irradiation Method and its Application as an Optical Limiting Material, Optik, 125, 6696 (2014); https://doi.org/10.1016/j.ijleo.2014.08.075
- R.A. Andrievski, Nanocrystalline High Melting Point Compound-Based Materials, J. Mater. Sci., 29, 614 (1994); https://doi.org/10.1007/BF00445970
- S.G. Kwon and T. Hyeon, Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides, Acc. Chem. Res., 41, 1696 (2008); https://doi.org/10.1021/ar8000537
- E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase and H. Weller, Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals, J. Am. Chem. Soc., 125, 9090 (2003); https://doi.org/10.1021/ja029937l
- C. Pimouguet, T. Lavaud, J.F. Dartigues and C.J. Helmer, Dementia Case Management Effectiveness on Health Care Costs and Resource Utilization: A Systematic Review of Randomized Controlled Trials, J. Nutr. Health Aging, 14, 669 (2010); https://doi.org/10.1007/s12603-010-0314-4
References
K.M. Khan, M. Khan, M. Ali, M. Taha, A. Hameed, S. Ali, S. Perveen and M.I. Choudhary, Synthesis and DPPH Radical Scavenging Activity of 5-Arylidene-N,N-dimethylbarbiturates, Med. Chem., 7, 231 (2011); https://doi.org/10.2174/157340611795564231
N. Shafiq, U. Arshad, G. Zarren, S. Parveen, I. Javed and A. Ashraf, A Comprehensive Review: Bio-Potential of Barbituric Acid and its Analogues, Curr. Org. Chem., 24, 129 (2020); https://doi.org/10.2174/1385272824666200110094457
K.M. Khan, M. Khan, A. Ahmad, A. Irshad, L.B.S. Kardono, F. Rahim, S.M. Haider, S. Ahmed and S. Parveen, Antibacterial and Antifungal Activities of 5-Arylidene-N,N-Dimethylbarbiturates Derivatives, J. Chem. Soc. Pak., 36, 1153 (2014).
J.K. Rajput and G. Kaur, CoFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for “Click” Synthesis of Arylidene Barbituric Acid Derivatives at Room Temperature, Chin. J. Catal., 34, 1697 (2013); https://doi.org/10.1016/S1872-2067(12)60646-9
D. Thetford, A.P. Chorlton and J. Hardman, Synthesis and Properties of Some Polycyclic Barbiturate Pigments, Dyes Pigments, 59, 185 (2003); https://doi.org/10.1016/S0143-7208(03)00104-9
K.P. Stahmann, J.L. Revuelta and H. Seulberger, Three Biotechnical Processes using Ashbya gossypii, Candida famata or Bacillus subtilis Compete with Chemical Riboflavin Production, Appl. Microbiol. Biotechnol., 53, 509 (2000); https://doi.org/10.1007/s002530051649
D. Zhang, X.-L. Ma, Y. Gu, H. Huang and G.-W. Zhang, Green Synthesis of Metallic Nanoparticles and their Potential Applications to Treat Cancer, Front. Chem., 8, 799 (2020); https://doi.org/10.3389/fchem.2020.00799
B.S. Takale, M. Bao and Y. Yamamoto, Gold Nanoparticle (AuNPs) and Gold Nanopore (AuNPore) Catalysts in Organic Synthesis, Org. Biomol. Chem., 12, 2005 (2014); https://doi.org/10.1039/C3OB42207K
M.-C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramole-cular Chemistry, Quantum-Size-Related Properties and Applications toward Biology, Catalysis and Nanotechnology, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+
A. Corma and H. Garcia, Supported Gold Nanoparticles as Catalysts for Organic Reactions, Chem. Soc. Rev., 37, 2096 (2008); https://doi.org/10.1039/b707314n
A. Abad, A. Corma and H. Garcia, Bridging the Gap Between Homogen-eous and Heterogeneous Gold Catalysis: Supported Gold Nanoparticles as Heterogeneous Catalysts for the Benzannulation Reaction, Top. Catal., 44, 237 (2007); https://doi.org/10.1007/s11244-007-0296-6
C. Wang, L. Chen and Z. Qi, One-Pot Synthesis of Gold Nanoparticles Embedded in Silica for Cyclohexane Oxidation, Catal. Sci. Technol., 3, 1123 (2013); https://doi.org/10.1039/c2cy20692g
H.-U. Blaser, H. Steiner and M. Studer, Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update, ChemCatChem, 1, 210 (2009); https://doi.org/10.1002/cctc.200900129
K. Layek, H. Maheswaran and M.L. Kantam, Ullmann Coupling of Aryl Iodides Catalyzed by Gold Nanoparticles Stabilized on Nanocrystalline Magnesium Oxide, Catal. Sci. Technol., 3, 1147 (2013); https://doi.org/10.1039/c3cy20826e
N.-H.T. Nguyen, P.-P.T. Nguyen, T.-D.T. Nguyen, M.T. Tran, T.-N. Thi Huynh and P.H. Tran, Au Nanorod: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via the Multicom-ponent Biginelli Reaction., Chemistry Select, 2, 3932 (2017); https://doi.org/10.1002/slct.201700533
N.D. Nguyen, V.P. Dang, A.Q. Le and Q.H. Nguyen, Electron beam/g-Ray Irradiation Synthesis of Gold Nanoparticles and Investigation of Antioxidant Activity, Adv. Nat. Sci. Nanosci. Nanotechnol., 5, 045002 (2014); https://doi.org/10.1088/2043-6262/5/4/045002
Y. Zhou, C.Y. Wang, Y.R. Zhu and Z.Y. Chen, A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature, Chem. Mater., 11, 2310 (1999); https://doi.org/10.1021/cm990315h
S.R. Makhsin, K.A. Razak, R. Noordin, N.D. Zakaria and T.S. Chun, The Effects Of Size And Synthesis Methods Of Gold Nanoparticle-Conjugated MaHIgG4 for use in an Immunochromatographic Strip Test to Detect Brugian Filariasis, Nanotechnology, 23, 495719 (2012); https://doi.org/10.1088/0957-4484/23/49/495719
M. Noruzi, D. Zare and D. Davoodi, A Rapid Biosynthesis Route for the Preparation of Gold Nanoparticles by Aqueous Extract of Cypress Leaves at Room Temperature, Spectrochim. Acta A Mol. Biomol. Spectrosc., 94, 84 (2012); https://doi.org/10.1016/j.saa.2012.03.041
K.B. Narayanan and N. Sakthivel, Phytosynthesis of Gold Nanoparticles using Leaf Extract of Coleus amboinicus Lour, Mater. Charact., 61, 1232 (2010); https://doi.org/10.1016/j.matchar.2010.08.003
X. Zhang, Q. Guo and D. Cui, Recent Advances in Nanotechnology Applied to Biosensors, Sensors, 9, 1033 (2009); https://doi.org/10.3390/s90201033
A.K. Augustine, V.P.N. Nampoori and M. Kailasnath, Rapid Synthesize of Gold Nanoparticles by Microwave Irradiation Method and its Application as an Optical Limiting Material, Optik, 125, 6696 (2014); https://doi.org/10.1016/j.ijleo.2014.08.075
R.A. Andrievski, Nanocrystalline High Melting Point Compound-Based Materials, J. Mater. Sci., 29, 614 (1994); https://doi.org/10.1007/BF00445970
S.G. Kwon and T. Hyeon, Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides, Acc. Chem. Res., 41, 1696 (2008); https://doi.org/10.1021/ar8000537
E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase and H. Weller, Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals, J. Am. Chem. Soc., 125, 9090 (2003); https://doi.org/10.1021/ja029937l
C. Pimouguet, T. Lavaud, J.F. Dartigues and C.J. Helmer, Dementia Case Management Effectiveness on Health Care Costs and Resource Utilization: A Systematic Review of Randomized Controlled Trials, J. Nutr. Health Aging, 14, 669 (2010); https://doi.org/10.1007/s12603-010-0314-4