Main Article Content

Abstract

A convenient and efficient synthesis of 1,3-dimethyl-5-benzylidenebarbituric acid derivatives via gold nanoparticles is carried out. The gold nanoparticles were initiated from novel and low-cost goldsmith effluent source using green reducing agent D-glucose. By mediating autoclave at 121 ºC and 15 lb/cm2 pressure, these particles were further uniformly synthesized by using microwave radiation. The catalyst was analyzed using UV, IR and scanning electron microscopic techniques. Synthesized 1,3-dimethyl-5-benzylidene-barbituric acid was assayed to study its inhibitory action against TAU protein.

Keywords

Green synthesis Gold nanoparticles 1 3-Dimethyl-5-benzylidene Barbituric acid.

Article Details

How to Cite
Thakare, S., Borhade, A., & Patil, T. (2021). Green Synthesis of Barbituric Acid Derivative via Goldsmith Effluent Initiated Gold Nanoparticles and its Molecular Docking Study against Alzheimer Drug Target. Asian Journal of Organic & Medicinal Chemistry, 6(3), 175–180. https://doi.org/10.14233/ajomc.2021.AJOMC-P332

References

  1. K.M. Khan, M. Khan, M. Ali, M. Taha, A. Hameed, S. Ali, S. Perveen and M.I. Choudhary, Synthesis and DPPH Radical Scavenging Activity of 5-Arylidene-N,N-dimethylbarbiturates, Med. Chem., 7, 231 (2011); https://doi.org/10.2174/157340611795564231
  2. N. Shafiq, U. Arshad, G. Zarren, S. Parveen, I. Javed and A. Ashraf, A Comprehensive Review: Bio-Potential of Barbituric Acid and its Analogues, Curr. Org. Chem., 24, 129 (2020); https://doi.org/10.2174/1385272824666200110094457
  3. K.M. Khan, M. Khan, A. Ahmad, A. Irshad, L.B.S. Kardono, F. Rahim, S.M. Haider, S. Ahmed and S. Parveen, Antibacterial and Antifungal Activities of 5-Arylidene-N,N-Dimethylbarbiturates Derivatives, J. Chem. Soc. Pak., 36, 1153 (2014).
  4. J.K. Rajput and G. Kaur, CoFe2O4 Nanoparticles: An Efficient Heterogeneous Magnetically Separable Catalyst for “Click” Synthesis of Arylidene Barbituric Acid Derivatives at Room Temperature, Chin. J. Catal., 34, 1697 (2013); https://doi.org/10.1016/S1872-2067(12)60646-9
  5. D. Thetford, A.P. Chorlton and J. Hardman, Synthesis and Properties of Some Polycyclic Barbiturate Pigments, Dyes Pigments, 59, 185 (2003); https://doi.org/10.1016/S0143-7208(03)00104-9
  6. K.P. Stahmann, J.L. Revuelta and H. Seulberger, Three Biotechnical Processes using Ashbya gossypii, Candida famata or Bacillus subtilis Compete with Chemical Riboflavin Production, Appl. Microbiol. Biotechnol., 53, 509 (2000); https://doi.org/10.1007/s002530051649
  7. D. Zhang, X.-L. Ma, Y. Gu, H. Huang and G.-W. Zhang, Green Synthesis of Metallic Nanoparticles and their Potential Applications to Treat Cancer, Front. Chem., 8, 799 (2020); https://doi.org/10.3389/fchem.2020.00799
  8. B.S. Takale, M. Bao and Y. Yamamoto, Gold Nanoparticle (AuNPs) and Gold Nanopore (AuNPore) Catalysts in Organic Synthesis, Org. Biomol. Chem., 12, 2005 (2014); https://doi.org/10.1039/C3OB42207K
  9. M.-C. Daniel and D. Astruc, Gold Nanoparticles: Assembly, Supramole-cular Chemistry, Quantum-Size-Related Properties and Applications toward Biology, Catalysis and Nanotechnology, Chem. Rev., 104, 293 (2004); https://doi.org/10.1021/cr030698+
  10. A. Corma and H. Garcia, Supported Gold Nanoparticles as Catalysts for Organic Reactions, Chem. Soc. Rev., 37, 2096 (2008); https://doi.org/10.1039/b707314n
  11. A. Abad, A. Corma and H. Garcia, Bridging the Gap Between Homogen-eous and Heterogeneous Gold Catalysis: Supported Gold Nanoparticles as Heterogeneous Catalysts for the Benzannulation Reaction, Top. Catal., 44, 237 (2007); https://doi.org/10.1007/s11244-007-0296-6
  12. C. Wang, L. Chen and Z. Qi, One-Pot Synthesis of Gold Nanoparticles Embedded in Silica for Cyclohexane Oxidation, Catal. Sci. Technol., 3, 1123 (2013); https://doi.org/10.1039/c2cy20692g
  13. H.-U. Blaser, H. Steiner and M. Studer, Selective Catalytic Hydrogenation of Functionalized Nitroarenes: An Update, ChemCatChem, 1, 210 (2009); https://doi.org/10.1002/cctc.200900129
  14. K. Layek, H. Maheswaran and M.L. Kantam, Ullmann Coupling of Aryl Iodides Catalyzed by Gold Nanoparticles Stabilized on Nanocrystalline Magnesium Oxide, Catal. Sci. Technol., 3, 1147 (2013); https://doi.org/10.1039/c3cy20826e
  15. N.-H.T. Nguyen, P.-P.T. Nguyen, T.-D.T. Nguyen, M.T. Tran, T.-N. Thi Huynh and P.H. Tran, Au Nanorod: An Efficient Catalyst for One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones via the Multicom-ponent Biginelli Reaction., Chemistry Select, 2, 3932 (2017); https://doi.org/10.1002/slct.201700533
  16. N.D. Nguyen, V.P. Dang, A.Q. Le and Q.H. Nguyen, Electron beam/g-Ray Irradiation Synthesis of Gold Nanoparticles and Investigation of Antioxidant Activity, Adv. Nat. Sci. Nanosci. Nanotechnol., 5, 045002 (2014); https://doi.org/10.1088/2043-6262/5/4/045002
  17. Y. Zhou, C.Y. Wang, Y.R. Zhu and Z.Y. Chen, A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature, Chem. Mater., 11, 2310 (1999); https://doi.org/10.1021/cm990315h
  18. S.R. Makhsin, K.A. Razak, R. Noordin, N.D. Zakaria and T.S. Chun, The Effects Of Size And Synthesis Methods Of Gold Nanoparticle-Conjugated MaHIgG4 for use in an Immunochromatographic Strip Test to Detect Brugian Filariasis, Nanotechnology, 23, 495719 (2012); https://doi.org/10.1088/0957-4484/23/49/495719
  19. M. Noruzi, D. Zare and D. Davoodi, A Rapid Biosynthesis Route for the Preparation of Gold Nanoparticles by Aqueous Extract of Cypress Leaves at Room Temperature, Spectrochim. Acta A Mol. Biomol. Spectrosc., 94, 84 (2012); https://doi.org/10.1016/j.saa.2012.03.041
  20. K.B. Narayanan and N. Sakthivel, Phytosynthesis of Gold Nanoparticles using Leaf Extract of Coleus amboinicus Lour, Mater. Charact., 61, 1232 (2010); https://doi.org/10.1016/j.matchar.2010.08.003
  21. X. Zhang, Q. Guo and D. Cui, Recent Advances in Nanotechnology Applied to Biosensors, Sensors, 9, 1033 (2009); https://doi.org/10.3390/s90201033
  22. A.K. Augustine, V.P.N. Nampoori and M. Kailasnath, Rapid Synthesize of Gold Nanoparticles by Microwave Irradiation Method and its Application as an Optical Limiting Material, Optik, 125, 6696 (2014); https://doi.org/10.1016/j.ijleo.2014.08.075
  23. R.A. Andrievski, Nanocrystalline High Melting Point Compound-Based Materials, J. Mater. Sci., 29, 614 (1994); https://doi.org/10.1007/BF00445970
  24. S.G. Kwon and T. Hyeon, Colloidal Chemical Synthesis and Formation Kinetics of Uniformly Sized Nanocrystals of Metals, Oxides, and Chalcogenides, Acc. Chem. Res., 41, 1696 (2008); https://doi.org/10.1021/ar8000537
  25. E.V. Shevchenko, D.V. Talapin, H. Schnablegger, A. Kornowski, O. Festin, P. Svedlindh, M. Haase and H. Weller, Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals: The Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals, J. Am. Chem. Soc., 125, 9090 (2003); https://doi.org/10.1021/ja029937l
  26. C. Pimouguet, T. Lavaud, J.F. Dartigues and C.J. Helmer, Dementia Case Management Effectiveness on Health Care Costs and Resource Utilization: A Systematic Review of Randomized Controlled Trials, J. Nutr. Health Aging, 14, 669 (2010); https://doi.org/10.1007/s12603-010-0314-4