Main Article Content

Abstract

In this article, a sequence of novel substituted 3-chloroflavones derivatives has been synthesized by using the inexperienced efficiency of solvent polyethylene glycol-400. This novelty of prepared derivatives was examined for their antifungal and their in silco docking study. Polyethylene glycol-400 is known as a green solvent to get to the bottom of the ecosystem’s toxic solvent load. A collection of novel substituted 3-chloroflavones derivatives has been synthesized by using the inexperienced functionality of polyethylene glycol-400 solvent. These newly prepared formulations had been evaluated for their antifungal and their in silico docking study. The structures of all the synthesized compounds were characterized with FT-IR, 1H NMR and HRMS techniques.

Keywords

3-Chloroflavones PEG-400 Biological activities.

Article Details

How to Cite
S. Chobe, S., J. Mali, N., K. Nerkar, C., S. Chobe, S., M. Patil, A., & Tated, T. (2021). Efficient Green Synthesis, Molecular Modeling and Antimicrobial Investigations of Novel Chloroflavone Libraries. Asian Journal of Organic & Medicinal Chemistry, 6(3), 161–166. https://doi.org/10.14233/ajomc.2021.AJOMC-P330

References

  1. D.A. Horton, G.T. Bourne and M.L. Smythe, The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures, Chem. Rev., 103, 893 (2003); https://doi.org/10.1021/cr020033s
  2. (a) L.A. Thompson and J.A. Ellman, Synthesis and Applications of Small Molecule Libraries, Chem. Rev., 96, 555 (1996); https://doi.org/10.1021/cr9402081 (b) J.S. Früchtel and G. Jung, Organic Chemistry on Solid Supports, Angew. Chem. Int. Ed. Engl., 35, 17 (1996); https://doi.org/10.1002/anie.199600171 (c) A. Nefzi, J.M. Ostresh and R.A. Houghten, The Current Status of Heterocyclic Combinatorial Libraries, Chem. Rev., 97, 449 (1997); https://doi.org/10.1021/cr960010b
  3. J.S. Yoo, Y. Lim and D. Koh, Crystal Structure of 2-(3,4-Dimethoxy phenyl)-3-hydroxy-4H-chromen-4-one, Acta Crystallogr. Sect. E Struct. Rep. Online, 70, o999 (2014); https://doi.org/10.1107/S1600536814018212
  4. E. Ullah Mughal, M. Ayaz, Z. Hussain, A. Hasan, A. Sadiq, M. Riaz, A. Malik, S. Hussain and M.I. Choudhary, Synthesis and Antibacterial Activity of Substituted Flavones, 4-Thioflavones and 4-Iminoflavones, Bioorg. Med. Chem., 14, 4704 (2006); https://doi.org/10.1016/j.bmc.2006.03.031
  5. R. Sheng, X. Lin, J. Zhang, K.S. Chol, W. Huang, B. Yang, Q. He and Y. Hu, Design, Synthesis and Evaluation of Flavonoid Derivatives as Potent AChE Inhibitors, Bioorg. Med. Chem., 17, 6692 (2009); https://doi.org/10.1016/j.bmc.2009.07.072
  6. K. Kanagalakshmi, M. Premanathan, R. Priyanka, B. Hemalatha and A. Vanangamudi, Synthesis, Anticancer and Antioxidant Activities of 7-Methoxyisoflavanone and 2,3-Diarylchromanones, Eur. J. Med. Chem., 45, 2447 (2010); https://doi.org/10.1016/j.ejmech.2010.02.028
  7. S.J. Cutler, F.M. El-Kabbani, C. Keane, S.L. Fisher-Shore, F.L. McCabe, R.K. Johnson and C. De Witt Blanton Jr., Synthesis of Flavone-8-carboxylic Acid Analogues as Potential Antitumor Agents, Eur. J. Med. Chem., 28, 407 (1993); https://doi.org/10.1016/0223-5234(93)90127-Z
  8. G.S. Gadaginamath, R.R. Kavali and S.R. Pujar, Synthesis and Antimicrobial Activity of New 1-n-Butyl-3-acetyl-5-(2,4-diamino-1,3,5-triazin-6-yl)methoxy-2-methylindole Derivatives, Indian J. Chem., 38B, 1226 (1998).
  9. B. Ahmed, T.A. Al Howiriny, J.S. Mossa and K.E.H. El-Tahir, Isolation, Antihypertensive Activity and Structure Activity Relationship of Flavonoids from Three Medicinal Plants, Indian J. Chem., 44B, 400 (2005).
  10. S.S. Lim, H. Kim and D. Lee, In vitro Antimalarial Activity of Flavonoids and Chalcones, Bull. Korean Chem. Soc., 28, 2495 (2007); https://doi.org/10.5012/bkcs.2007.28.12.2495
  11. E. Middleton Jr., Eds.:J.A. Manthey amd B.S. Buslig, Effect of Plant Flavonoids on Immune and Inflammatory Cell Function. In: Flavonoids in the Living System. Advances in Experimental Medicine and Biology, Springer, Boston, MA, vol 439, pp. 175-182 (1998).
  12. C. Pouget, F. Lauthier, A. Simon, C. Fagnere, J.P. Basly, C. Delage and A.J. Chulia, Flavonoids: Structural Requirements for Antiproliferative Activity on Breast Cancer Cells, Bioorg. Med. Chem. Lett., 11, 3095 (2001); https://doi.org/10.1016/S0960-894X(01)00617-5
  13. P. Anastas and N. Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev., 39, 301 (2010); https://doi.org/10.1039/B918763B
  14. M.C. Bryan, P.J. Dunn, D. Entwistle, F. Gallou, S.G. Koenig, J.D. Hayler, M.R. Hickey, S. Hughes, M.E. Kopach, P. Richardson, F. Roschangar, G. Moine, A. Steven and F.J. Weiberth, Key Green Chemistry Research Areas from a Pharmaceutical Manufacturers’ Perspective Revisited, Green Chem., 20, 5082 (2018); https://doi.org/10.1039/C8GC01276H
  15. E.A.A. Hafez, S.M. Al-Mousawi, M.S. Moustafa, K.U. Sadek and M.H. Elnagdi, Green Methodologies in Organic Synthesis: Recent Developments in our Laboratories, Green Chem. Lett. Rev., 6, 189 (2013); https://doi.org/10.1080/17518253.2012.740078
  16. B.A. de Marco, B.S. Rechelo, E.G. Tótoli, A.C. Kogawa and H.R.N. Salgado, Evolution of Green Chemistry and its Multidimensional Impacts: A Review, Saudi Pharm. J., 27, 1 (2019); https://doi.org/10.1016/j.jsps.2018.07.011
  17. R.S. Varma, Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials, ACS Sustain. Chem. Eng., 4, 5866 (2016); https://doi.org/10.1021/acssuschemeng.6b01623
  18. B.S. Dawane, B.M. Shaikh, N.T. Khandare, V.T. Kamble, S.S. Chobe and S.G. Konda, Eco-friendly Polyethylene Glycol-400: A Rapid and Efficient Recyclable Reaction Medium for the Synthesis of Thiazole Derivatives, Green Chem. Lett. Rev., 3, 205 (2010); https://doi.org/10.1080/17518251003709506
  19. M. Gütlein, A. Karwath and S. Kramer, CheS-Mapper - Chemical Space Mapping and Visualization in 3D, J. Cheminform., 4, 7 (2012); https://doi.org/10.1186/1758-2946-4-7
  20. V.A. Adole, R.A. More, B.S. Jagdale, T.B. Pawar and S.S. Chobe, Efficient Synthesis, Antibacterial, Antifungal, Antioxidant and Cytotoxicity Study of 2-(2-Hydrazineyl)thiazole Derivatives, ChemistrySelect, 5, 2778 (2020); https://doi.org/10.1002/slct.201904609
  21. J. Chen, S.K. Spear, J.G. Huddleston and R.D. Rogers, Polyethylene Glycol and Solutions of Polyethylene Glycol as Green Reaction Media, Green Chem., 7, 64 (2005); https://doi.org/10.1039/b413546f
  22. R.W. Fairbrother and G. Martyn, The Disc Technique for Determining Sensitivity to the Antibiotics, J. Clin. Pathol., 4, 374 (1951); https://doi.org/10.1136/jcp.4.3.374
  23. J.C. Gould and J.H. Bowie, The Determination of Bacterial Sensitivity to Antibiotics, Edinburgh Med. J., 59, 178 (1952).
  24. T.L. Devale, J. Parikh, P. Miniyar, P. Sharma, B. Shrivastava and P. Murumkar, Dihydropyrimidinone-Isatin Hybrids as Novel Non-Nucleoside HIV-1 Reverse Transcriptase Inhibitors, Bioorg. Chem., 70, 256 (2017); https://doi.org/10.1016/j.bioorg.2017.01.006
  25. R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis and P.S. Shenkin, Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy, J. Med. Chem., 47, 1739 (2004); https://doi.org/10.1021/jm0306430