Main Article Content

Abstract

Thiazole derivatives are potential candidates for drug development. They can be efficiently synthesized and are extremely active against several diseases, including antimicrobial screening. A series of 2-(2-(3-methoxy-4-(prop-2-yn-1-yloxy)benzylidene)hydrazinyl)-4-(p-tolyl)-4,5-dihydrothiazole (5a-f) and 2-((2-(4-(4-bromophenyl)-thiazol-2-yl)hydrazono)methyl)-5-(diethylamino)phenol (8g-j). The synthesized compounds’ have been characterized by spectral analysis, such as mass, FT-IR, 1H & 13C NMR. All the synthesized compounds were screened for in vitro antibacterial activity against some Gram-positive (Staphylococcus aureus, Streptococcus pyogenes) and Gram-negative (Escherichia coli, Klebsila) bacteria. The thiazole derivatives with a pharmacologically potent group provide the valued therapeutic involvement in the treatment of microbial diseases, especially against bacterial and fungal infections. Furthermore, to gauze their plausible mechanism of action and thermodynamic interaction governing these molecules’ binding, a molecular docking study was carried out against crucial target bacterial DNA, Gyrase.

Keywords

Antimicrobial agents Binding affinity study Alkyne Thiazole scaffold.

Article Details

How to Cite
P. Mori, N., K. Parmar, P., M. Khedkar, V., Sanghavi, G., & C. Khunt, R. (2021). Synthesis, Characterization and Docking Studies of Some New Alkyne Containing Thiazole Derivatives. Asian Journal of Organic & Medicinal Chemistry, 6(2), 92–101. https://doi.org/10.14233/ajomc.2021.AJOMC-P319

References

  1. M.K. Rai, S.D. Deshmukh, A.P. Ingle and A.K. Gade, Silver Nanoparticles: The Powerful Nanoweapon against Multidrug-Resistant Bacteria, J. Appl. Microbiol., 112, 841 (2012); https://doi.org/10.1111/j.1365-2672.2012.05253.x
  2. R.J. Worthington and C. Melander, Combination Approaches to Combat Multidrug-Resistant bacteria, Trends Biotechnol., 31, 177 (2013); https://doi.org/10.1016/j.tibtech.2012.12.006
  3. G.P. Suresha, R. Suhas, W. Kapfo and D.C. Gowda, Urea/Thiourea Derivatives of Quinazolinone–Lysine Conjugates: Synthesis and Structure–Activity Relationships of a New Series of Antimicrobials, Eur. J. Med. Chem., 46, 2530 (2011); https://doi.org/10.1016/j.ejmech.2011.03.041
  4. S.T. Tuncel, S.E. Gunal, M. Ekizoglu, N. Gokhan Kelekci, S.S. Erdem, E. Bulak, W. Frey and I. Dogan, Thioureas and their Cyclized Derivatives: Synthesis, Conformational Analysis and Antimicrobial Evaluation, J. Mol. Struct., 1179, 40 (2019); https://doi.org/10.1016/j.molstruc.2018.10.055.
  5. A. Shirai, Y. Fumoto, T. Shouno, H. Maseda and T. Omasa, Synthesis and Biological Activity of Thiazolyl-Acetic Acid Derivatives as Possible Antimicrobial Agents, Biocontrol Sci., 18, 59 (2013); https://doi.org/10.4265/bio.18.59
  6. I. Althagafi, N. El-Metwaly and T.A. Farghaly, New Series of Thiazole Derivatives: Synthesis, Structural Elucidation, Antimicrobial Activity, Molecular Modeling and MOE Docking, Molecules, 24, 1741 (2019); https://doi.org/10.3390/molecules24091741
  7. M.A.T. Nguyen, A.K. Mungara, J.-A. Kim, K.D. Lee and S. Park, Synthesis, Anticancer and Antioxidant Activity of Novel Carbazole-based Thiazole Derivatives, Phosphorus Sulfur Silicon Rel. Elem., 190, 191 (2015); https://doi.org/10.1080/10426507.2014.914933
  8. M.A. Kumar, T.N. Minh An, I.J. Lee, S. Park and K.D. Lee, Synthesis and Bioactivity of Novel Phenothiazine-Based Thiazole Derivatives, Phosphorus Sulfur Silicon Rel. Elem., 190, 1160 (2015); https://doi.org/10.1080/10426507.2014.978324
  9. K. Taori, V.J. Paul and H. Luesch, Structure and Activity of Largazole, a Potent Antiproliferative Agent from the Floridian Marine Cyanobacterium Symploca sp., J. Am. Chem. Soc., 130, 1806 (2008); https://doi.org/10.1021/ja7110064
  10. Z. Jin, Imidazole, Oxazole and Thiazole Alkaloids, Nat. Prod. Rep., 23, 464 (2006); https://doi.org/10.1039/b502166a
  11. Y. Li, H. Wu, L. Tang, C. Feng, J. Yu, Y. Li, Y. Yang, B. Yang and Q. He, The Potential Insulin Sensitizing and Glucose Lowering Effects of a Novel Indole Derivative in vitro and in vivo, Pharmacol. Res., 56, 335 (2007); https://doi.org/10.1016/j.phrs.2007.08.002
  12. A. Hamid, A. Saeed, M. A. Khan, S. Afridi and F. Jabeen, Synthesis, Characterization, Antimicrobial, Antioxidant and Computational Evaluation of N-Acyl-morpholine-4-carbothioamides, Mol. Divers., 25, 763 (2021); https://doi.org/10.1007/s11030-020-10054-w
  13. H. Aziz, A. Saeed, M.A. Khan, S. Afridi, F. Jabeen, Ashfaq-ur-Rehman and M. Hashim, Novel N-Acyl-1H-imidazole-1-carbothioamides: Design, Synthesis, Biological and Computational Studies, Chem. Biodivers., 17, e1900509 (2020); https://doi.org/10.1002/cbdv.201900509
  14. A. Hamid, A. Mahmood, S. Zaib, A. Saeed, H.R. El-Seedi and J. Pelletier, J. Biomol. Struct. Dyn., (2020); https://doi.org/10.1080/07391102.2020.1802336
  15. M. Abdalla, S. Gomha, M. Abd El-Aziz and N. Serag, Synthesis and Evaluation of Some Novel Thiazoles and 1,3-thiazines as Potent Agents against the Rabies Virus, Turk. J. Chem., 40, 441 (2016); https://doi.org/10.3906/kim-1506-13
  16. S.M. Gomha, S.M. Riyadh, E.A. Mahmmoud and M.M. Elaasser, Synthesis and Anticancer Activity of Arylazothiazoles and 1,3,4-Thiadiazoles using Chitosan-grafted-poly(4-vinylpyridine) as a Novel Copolymer Basic Catalyst, Chem. Heterocycl. Compd., 51, 1030 (2015); https://doi.org/10.1007/s10593-016-1815-9
  17. M.G. Sobhi, O.A. Abdou, M.K. Omaima and M.K. Sahar, Synthesis and Molecular Docking of Some Novel Thiazoles and Thiadiazoles Incorporating Pyranochromene Moiety as Potent Anticancer Agents, Mini Rev. Med. Chem., 18, 1670 (2018); https://doi.org/10.2174/1389557518666180424113819
  18. S.M. Gomha, A.O. Abdelhamid, N.A. Abdelrehem and S.M. Kandeel, Efficient Synthesis of New Benzo-furan-based Thiazoles and Investi-gation of their Cytotoxic Activity Against Human Breast Carcinoma Cell Lines, Heterocycl. Chem., 55, 995 (2018); https://doi.org/10.1002/jhet.3131
  19. S. Gomha, M. Edrees and F. Altalbawy, Synthesis and Characterization of Some New Bis-Pyrazolyl-Thiazoles Incorporating the Thiophene Moiety as Potent Anti-Tumor Agents, Int. J. Mol. Sci., 17, 1499 (2016); https://doi.org/10.3390/ijms17091499
  20. R. Dolle, B. Le Bourdonnec, G.A. Morales, K.J. Moriarty and J.M. Salvino, Comprehensive Survey of Combinatorial Library Synthesis: 2005, J. Comb. Chem., 8, 597 (2006); https://doi.org/10.1021/cc060095m
  21. M.M. Sekhar, U. Nagarjuna, V. Padmavathi, A. Padmaja, N.V. Reddy and T. Vijaya, Synthesis and Antimicrobial Activity of Pyrimidinyl 1,3,4-oxadiazoles, 1,3,4-Thiadiazoles and 1,2,4-Triazoles, Eur. J. Med. Chem., 145, 1 (2018); https://doi.org/10.1016/j.ejmech.2017.12.067
  22. K. Kapadiya, J. Dhalani and B. Patel, Green Regioselective Synthesis of (Purin-6-yl)hydrazones, Russ. J. Org. Chem., 55, 1575 (2019); https://doi.org/10.1134/S1070428019100178
  23. K. Kapadiya, Y. Jadeja and R.C. Khunt, Synthesis of Purine-Based Triazoles by Copper(I)-Catalyzed Huisgen Azide-Alkyne Cycloaddition Reaction, J. Heterocycl. Chem., 55, 199 (2018); https://doi.org/10.1002/jhet.3025
  24. K. Kapadiya, K. Kavadia, P. Manvar, R. Kotadiya, R. Kothari and R.C. Khunt, Synthesis and Biological Significance of Fluorinated Cyclo-propanecarbohydrazide based Benzylidene Derivatives, J. Chem. Biol. Interfaces, 5, 258 (2015).
  25. K. Kapadiya, B. Dhaduk and R. Khunt, Synthesis, Characterization and Crystallographic Analysis of N-2-(tert-Butylcarbomyl)(4-chlorophenyl methyl)-6-fluoro-N-(3,4,5-triethoxyphenyl)chroman-2-carboxamide, Indian J. Chem., 58B, 944 (2019).
  26. K. Mdluli and Z. Ma, Mycobacterium tuberculosis DNA Gyrase as a Target for Drug Discovery, Infect. Disord. Drug Targets, 7, 159 (2007); https://doi.org/10.2174/187152607781001763
  27. T. Khan, K. Sankhe, V. Suvarna, A. Sherje, K. Patel and B. Dravyakar, DNA Gyrase Inhibitors: Progress and Synthesis of Potent Compounds as Antibacterial Agents, Biomed. Pharmacother., 103, 923 (2018); https://doi.org/10.1016/j.biopha.2018.04.021
  28. A. Maxwell and D.M. Lawson, The ATP-Binding Site of Type II Topo-isomerases as a Target for Antibacterial Drugs, Curr. Top. Med. Chem., 3, 283 (2003); https://doi.org/10.2174/1568026033452500
  29. R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin and D.T. Mainz, Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes, J. Med. Chem., 49, 6177 (2006); https://doi.org/10.1021/jm051256o
  30. T.A. Halgren, R.B. Murphy, R.A. Friesner, H.S. Beard, L.L. Frye, W.T. Pollard and J.L. Banks, Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening, J. Med. Chem., 47, 1750 (2004); https://doi.org/10.1021/jm030644s
  31. J.M. Andrews, Determination of Minimum Inhibitory Concentrations, Antimicrob. Chemother., 48, 5 (2001); https://doi.org/10.1093/jac/48.suppl_1.5
  32. R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, M.P. Repasky, E.H. Knoll, M. Shelley, J.K. Perry, D.E. Shaw, P. Francis and P.S. Shenkin, Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy, J. Med. Chem., 47, 1739 (2004); https://doi.org/10.1021/jm0306430

Most read articles by the same author(s)