Main Article Content
Abstract
Heterolyptic metal complexes having the composition M(Bpy)Cl2 (where, M = Cu(II), Ni(II) and Co(II); Bpy = 2,2′-bipyridyl) were reacted with 2-acetylthiophene-4-phenyl-3-thiosemicarbazone (ATPT) to produce bivalent metal complexes with molecular formula M(Bpy)(ATPT)Cl·H2O. The complexes were characterized using physical (molar conductivity) and spectral (mass spectra, infrared and electronic spectroscopies) methods. Electrochemical behaviour of the complexes was revealed using cyclic voltammetry. The Cu(II)/Cu(I) couple complexes show a quasi-reversible cyclic voltammetric responses. The DNA binding properties of complexes were determined through absorption UV-visible spectrophotometry. Furthermore, the agar well diffusion method was used to screen the metal(II) complexes for their antibacterial activity against pathogenic bacterial strains, namely Gram negative strains such as Escherichia coli and Klebsiella pneumonia and Gram positve strains such as Staphylococcus aureus and Bacillus cereus. The synthesized Cu(Bpy)(ATPT)]Cl·H2O complex strongly inhibits bacteria compared with other complexes.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- P. Parameshwara, J. Karthikeyan, A.N. Shetty and P. Shetty, 4-(N,N-Diethylamino)benzaldehyde Thiosemicarbazone in the Spectrophoto-metric Determination of Palladium, Ann. Chim., 97, 1097 (2007); https://doi.org/10.1002/adic.200790093
- S.L. Narayana, S.A. Reddy, K.J. Reddy, S.O. Baek and A.V. Reddy, A Critical Review on Analytical and Biological Applications of Thio- and Phenylthiosemicarbazones, Asian J. Chem., 24, 1889 (2012).
- C. Bonaccorso, T. Marzo and D. La Mendola, Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review, Pharmaceuticals, 13, 4 (2020); https://doi.org/10.3390/ph13010004
- H. Beraldo and D. Gambinob, The Wide Pharmacological Versatility of Semicarbazones, Thiosemicarbazones and Their Metal Complexes, Mini-Rev. Med. Chem., 4, 31 (2004); https://doi.org/10.2174/1389557043487484
- A. Karaküçük-Iyidogan, D. Tasdemir, E.E. Oruç-Emre and J. Balzarini, Novel Platinum(II) and Palladium(II) Complexes of Thiosemicarbazones Derived from 5-Substituted Thiophene-2-carboxaldehydes and their Antiviral and Cytotoxic Activities, Eur. J. Med. Chem., 46, 5616 (2011); https://doi.org/10.1016/j.ejmech.2011.09.031
- K.A. Wood, W.L. Wong and M.I. Saunders, [64Cu]diacetyl-bis(N4-methyl-thiosemicarbazone)-A Radiotracer for Tumor Hypoxia, Nucl. Med. Biol., 35, 393 (2008); https://doi.org/10.1016/j.nucmedbio.2008.02.002
- M.S. Refat, I.M. El-Deen, Z.M. Anwer and S. El-Ghol, Bivalent Transition Metal Complexes of Coumarin-3-yl Thiosemicarbazone Derivatives: Spectroscopic, Antibacterial Activity and Thermogravi-metric Studies, J. Mol. Struct., 920, 149 (2009); https://doi.org/10.1016/j.molstruc.2008.10.059
- V. Mahalingam, N. Chitrapriya, F.R. Fronczek and K. Natarajan, New Ru(II)–DMSO Complexes of ON/SN Chelates: Synthesis, Behaviour of Schiff Bases towards Hydrolytic Cleavage of C=N Bond, Electro-chemistry and Biological Activities, Polyhedron, 29, 3363 (2010); https://doi.org/10.1016/j.poly.2010.09.019
- P. Chellan, S. Nasser, L. Vivas, K. Chibale and G.S. Smith, Cyclo-palladated Complexes Containing Tridentate Thiosemicarbazone Ligands of Biological Significance: Synthesis, Structure and Antimalarial Activity, J. Organomet. Chem., 695, 2225 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.010
- A. Pérez-Rebolledo, L.R. Teixeira, A.A. Batista, A.S. Mangrich, G. Aguirre, H. Cerecetto, M. González, P. Hernández, A.M. Ferreira and N.L. Speziali, 4-Nitroacetophenone-Derived Thiosemicarbazones and their Copper(II) Complexes with Significant in vitro Anti-Trypanosomal Activity, Eur. J. Med. Chem., 43, 939 (2008); https://doi.org/10.1016/j.ejmech.2007.06.020
- I.J. Kang L.W. Wang, T. Hsu, A.Yueh, A. Lee, C.C. Lee, Y.C. Lee, C.Y. Chao, Y.S. Shih and S. R. Chern, Isatin-b-thiosemicarbazones as Potent Herpes simplex Virus Inhibitors, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
- B. Zhang, H. Luo, Q. Xu, L. Lin and B. Zhang, Antitumor Activity of a trans-Thiosemicarbazone Schiff Base Palladium(II) Complex on Human Gastric Adenocarcinoma Cells, Oncotarget, 8, 13620 (2017); https://doi.org/10.18632/oncotarget.14620
- C.M. Nutting, C.M.L. van Herpen, A.B. Miah, S.A. Bhide, J.-P. Machiels, J. Buter, C. Kelly, D. de Raucourt and K.J. Harrington, Phase II study of 3-AP Triapine in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma, J. Ann. Oncol., 20, 1275 (2009); https://doi.org/10.1093/annonc/mdn775
- B. Ma, B.C. Goh, E.H. Tan, K.C. Lam, R. Soo, S.S. Leong, L.Z. Wang, F. Mo, A.T.C. Chan, B. Zee and T. Mok, A Multicenter Phase II Trial of 3-aAminopyridine-2-carboxaldehyde Thiosemicarbazone (3-AP, Triapine®) and Gemcitabine in Advanced Non-Small-Cell Lung Cancer with Pharmacokinetic Evaluation using Peripheral Blood Mononuclear Cells, Invest. New Drugs, 26, 169 (2008); https://doi.org/10.1007/s10637-007-9085-0
- C. Krishnamurthy, L.A. Byran and D.H. Petering, Effects of Ethylene-diaminetetraacetic Acid and 1,10-Phenanthroline on Cell Proliferation and DMA Synthesis of Ehrlich Ascites Cells, Cancer Res., 40, 4092 (1980).
- N.B.L. Prasad, Ph.D thesis, Spectrophotometric Determination of Cu(II) and Ni(II) in Edible Oils using Oximethiosemicarbazones, Sri Krishnadevaraya University, Ananthapuramu, India (2001).
- G.M. de Lima, J.L. Neto, H. Beraldo, H.G.L. Siebald and D.J. Duncalf, Structural and Spectral Studies of Thiosemicarbazones Derived from 2-Acetylthiophene, J. Mol. Struct., 604, 287 (2002); https://doi.org/10.1016/S0022-2860(01)00664-0
- M.S. Rao N.B.L. Prasad and K.H. Reddy, Spectrophotometric Determination of Copper(II) in Alloys and Edible Oils using 2-Acetyl-thiophene Thiosemicarbazone, Indian J. Chem., 45A, 1659 (2006).
- J.L. Neto, G.M. de Lima and H. Beraldo, Platinum and Palladium Complexes of Thiosemicarbazones Derived of 2-Acetylthiophene: Synthesis and Spectral Studies, Spectrochim. Acta A Mol. Biomol. Spectrosc., 63, 669 (2006); https://doi.org/10.1016/j.saa.2005.06.016
- M. Aljahdali and A. El-Sherif, Synthesis, Characterization, Molecular Modeling and Biological Activity of Mixed Ligand Complexes of Cu(II), Ni(II) and Co(II) based on 1,10-Phenanthroline and Novel Thiosemicarbazone, Inorg. Chim. Acta, 40, 758 (2013); https://doi.org/10.1016/j.ica.2013.06.040
- V.S. Shivankar, R.B. Vaidya, S.R. Dharwadkar and N.V. Thakkar, Synthesis, Characterization, and Biological Activity of Mixed Ligand Co(II) Complexes of 8-Hydroxyquinoline and Some Amino Acids, Synth. React. Inorg. Met.-Org. Chem., 33, 1597 (2003); https://doi.org/10.1081/SIM-120025443
- A. Adkhis, O. Benali-Baïtich, M.A. Khan and G. Bouet, Synthesis, Characterization and Thermal Behaviour of Mixed-Ligand Complexes of Cobalt(III) with Dimethylglyoxime and Some Amino Acids, Synth. React. Inorg. Met.-Org. Chem., 30, 1849 (2000); https://doi.org/10.1080/00945710009351873
- M.S.S. Babu, K.H. Reddy and P.G. Krishna, Synthesis, Characterization, DNA Interaction and Cleavage Activity of New Mixed Ligand Copper(II) Complexes with Heterocyclic Bases, Polyhedron, 26, 572 (2007); https://doi.org/10.1016/j.poly.2006.08.026
- K.H. Reddy, P.S. Reddy and P.R. Babu, Nuclease Activity of Mixed Ligand Complexes of Copper(II) with Heteroaromatic Derivatives and Picoline, Transition Met. Chem., 25, 505 (2000); https://doi.org/10.1023/A:1007038514536
- M. Pragathi and K.H. Reddy, Synthesis, Crystal Structures, DNA Binding and Cleavage Activity of Water Soluble Mono and Dinuclear Copper(II) Complexes with Tridentate Ligands, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010
- W.J. Geary, The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
- H.S. Seleem, M. Mostafa, M. Saif and A. Amin, Copper(II)-Complexes of an Isatinic Quinolyl Hydrazone-Anion Effect, Res. J. Chem. Sci., 3, 86 (2013).
- E. Szlyk, A. Surdykowski, M. Barwiolek and E. Larsen, Spectroscopy and Stereochemistry of the Optically Active Copper(II), Cobalt(II) and Nickel(II) Complexes with Schiff Bases N,N¢-(1R,2R)-(-)-1,2-Cyclohexylenebis(3-methylbenzylideneiminato) and N,N¢-(1R,2R)-(-)-1,2-Cyclohexylenebis(5-methylbenzylideneiminato), Polyhedron, 21, 2711 (2002); https://doi.org/10.1016/S0277-5387(02)01273-1
- L. Mitu, N. Raman, A. Kriza, N. Stanica and M. Dianu, Synthesis, Characterization and Antimicrobial Activity of Cu(II), Ni(II), Co(II), Zn(II) Complexes with Isonicotinoylhydrazone-4-benzyloxybenzalde-hyde, Asian J. Chem., 21, 5749 (2009).
- P. Chattopadhyay and C. Sinha, Synthesis and Characterization of Uranyl Complexes and their Peroxo Derivatives with some ThioSchiff Bases, Indian. J. Chem A, 35, 523 (1996); https://doi.org/nopr.niscair.res.in/handle/123456789/41355
- B. Dede, I. Ozmen and F. Karipcin, Synthesis, Characterization, Catalase Functions and DNA Cleavage Studies of New Homo and Heteronuclear Schiff Base Copper(II) Complexes, Polyhedron, 28, 3967 (2009); https://doi.org/10.1016/j.poly.2009.09.020
- C. Lihua, H. Peizhi, D. Xialan, Z. Bo and Z. Xiaoxcong, Synthesis and Characterization of Open-Ring Complexes Formed in the Reaction of Lanthanides(III) with Salicyladhehyde Schiff Base Containing Pyridine and Amide Bridge, Asian J. Chem., 17, 969 (2005).
- D. Kivelson and R. Neiman, ESR Studies on the Bonding in Copper Complexes, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880
- K.K. Narang and P.V. Singh, E.S.R. Studies on Acylhydrazine and Hydrazone Copper(II) Sulfate Complexes, Transition Met. Chem., 21, 507 (1996); https://doi.org/10.1007/BF00229701
- I.M. Procter, B.J. Hathaway and P. Nicholls, The Electronic Properties and Stereochemistry of the Copper(II) Ion. Part I. Bis(ethylenediamine)-copper(II) Complexes, J. Chem. Soc. A, 1678 (1968); https://doi.org/10.1039/j19680001678
- A.S. Kumbhar, S.B. Padhye, D.X. West and A.E. Liberta, Electro-chemical Studies of Copper(II) 2-Acetylpyridine4 N-Dialkylthiosemi-carbazones. Relation to their Spectral, Magnetic and Biological Properties, Transition Met. Chem., 16, 276 (1991); https://doi.org/10.1007/BF01032852
- S. Usha and M. Palaniandavar, Influence of Chelate-ring Size and Number of Sulfur-donor Atoms on Spectra and Redox Behaviour of Copper(II) Bis(benzimidazolyl) Tetra- and Penta-thloether Complexes, J. Chem. Soc., Dalton Trans., 15, 2277 (1994); https://doi.org/10.1039/DT9940002277
- M. Sirajuddin, S. Ali and A. Badshah, Drug-DNA interactions and their Study by UV-Visible, Fluorescence Spectroscopies and Cyclic Voltametry, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013
References
P. Parameshwara, J. Karthikeyan, A.N. Shetty and P. Shetty, 4-(N,N-Diethylamino)benzaldehyde Thiosemicarbazone in the Spectrophoto-metric Determination of Palladium, Ann. Chim., 97, 1097 (2007); https://doi.org/10.1002/adic.200790093
S.L. Narayana, S.A. Reddy, K.J. Reddy, S.O. Baek and A.V. Reddy, A Critical Review on Analytical and Biological Applications of Thio- and Phenylthiosemicarbazones, Asian J. Chem., 24, 1889 (2012).
C. Bonaccorso, T. Marzo and D. La Mendola, Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review, Pharmaceuticals, 13, 4 (2020); https://doi.org/10.3390/ph13010004
H. Beraldo and D. Gambinob, The Wide Pharmacological Versatility of Semicarbazones, Thiosemicarbazones and Their Metal Complexes, Mini-Rev. Med. Chem., 4, 31 (2004); https://doi.org/10.2174/1389557043487484
A. Karaküçük-Iyidogan, D. Tasdemir, E.E. Oruç-Emre and J. Balzarini, Novel Platinum(II) and Palladium(II) Complexes of Thiosemicarbazones Derived from 5-Substituted Thiophene-2-carboxaldehydes and their Antiviral and Cytotoxic Activities, Eur. J. Med. Chem., 46, 5616 (2011); https://doi.org/10.1016/j.ejmech.2011.09.031
K.A. Wood, W.L. Wong and M.I. Saunders, [64Cu]diacetyl-bis(N4-methyl-thiosemicarbazone)-A Radiotracer for Tumor Hypoxia, Nucl. Med. Biol., 35, 393 (2008); https://doi.org/10.1016/j.nucmedbio.2008.02.002
M.S. Refat, I.M. El-Deen, Z.M. Anwer and S. El-Ghol, Bivalent Transition Metal Complexes of Coumarin-3-yl Thiosemicarbazone Derivatives: Spectroscopic, Antibacterial Activity and Thermogravi-metric Studies, J. Mol. Struct., 920, 149 (2009); https://doi.org/10.1016/j.molstruc.2008.10.059
V. Mahalingam, N. Chitrapriya, F.R. Fronczek and K. Natarajan, New Ru(II)–DMSO Complexes of ON/SN Chelates: Synthesis, Behaviour of Schiff Bases towards Hydrolytic Cleavage of C=N Bond, Electro-chemistry and Biological Activities, Polyhedron, 29, 3363 (2010); https://doi.org/10.1016/j.poly.2010.09.019
P. Chellan, S. Nasser, L. Vivas, K. Chibale and G.S. Smith, Cyclo-palladated Complexes Containing Tridentate Thiosemicarbazone Ligands of Biological Significance: Synthesis, Structure and Antimalarial Activity, J. Organomet. Chem., 695, 2225 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.010
A. Pérez-Rebolledo, L.R. Teixeira, A.A. Batista, A.S. Mangrich, G. Aguirre, H. Cerecetto, M. González, P. Hernández, A.M. Ferreira and N.L. Speziali, 4-Nitroacetophenone-Derived Thiosemicarbazones and their Copper(II) Complexes with Significant in vitro Anti-Trypanosomal Activity, Eur. J. Med. Chem., 43, 939 (2008); https://doi.org/10.1016/j.ejmech.2007.06.020
I.J. Kang L.W. Wang, T. Hsu, A.Yueh, A. Lee, C.C. Lee, Y.C. Lee, C.Y. Chao, Y.S. Shih and S. R. Chern, Isatin-b-thiosemicarbazones as Potent Herpes simplex Virus Inhibitors, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
B. Zhang, H. Luo, Q. Xu, L. Lin and B. Zhang, Antitumor Activity of a trans-Thiosemicarbazone Schiff Base Palladium(II) Complex on Human Gastric Adenocarcinoma Cells, Oncotarget, 8, 13620 (2017); https://doi.org/10.18632/oncotarget.14620
C.M. Nutting, C.M.L. van Herpen, A.B. Miah, S.A. Bhide, J.-P. Machiels, J. Buter, C. Kelly, D. de Raucourt and K.J. Harrington, Phase II study of 3-AP Triapine in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma, J. Ann. Oncol., 20, 1275 (2009); https://doi.org/10.1093/annonc/mdn775
B. Ma, B.C. Goh, E.H. Tan, K.C. Lam, R. Soo, S.S. Leong, L.Z. Wang, F. Mo, A.T.C. Chan, B. Zee and T. Mok, A Multicenter Phase II Trial of 3-aAminopyridine-2-carboxaldehyde Thiosemicarbazone (3-AP, Triapine®) and Gemcitabine in Advanced Non-Small-Cell Lung Cancer with Pharmacokinetic Evaluation using Peripheral Blood Mononuclear Cells, Invest. New Drugs, 26, 169 (2008); https://doi.org/10.1007/s10637-007-9085-0
C. Krishnamurthy, L.A. Byran and D.H. Petering, Effects of Ethylene-diaminetetraacetic Acid and 1,10-Phenanthroline on Cell Proliferation and DMA Synthesis of Ehrlich Ascites Cells, Cancer Res., 40, 4092 (1980).
N.B.L. Prasad, Ph.D thesis, Spectrophotometric Determination of Cu(II) and Ni(II) in Edible Oils using Oximethiosemicarbazones, Sri Krishnadevaraya University, Ananthapuramu, India (2001).
G.M. de Lima, J.L. Neto, H. Beraldo, H.G.L. Siebald and D.J. Duncalf, Structural and Spectral Studies of Thiosemicarbazones Derived from 2-Acetylthiophene, J. Mol. Struct., 604, 287 (2002); https://doi.org/10.1016/S0022-2860(01)00664-0
M.S. Rao N.B.L. Prasad and K.H. Reddy, Spectrophotometric Determination of Copper(II) in Alloys and Edible Oils using 2-Acetyl-thiophene Thiosemicarbazone, Indian J. Chem., 45A, 1659 (2006).
J.L. Neto, G.M. de Lima and H. Beraldo, Platinum and Palladium Complexes of Thiosemicarbazones Derived of 2-Acetylthiophene: Synthesis and Spectral Studies, Spectrochim. Acta A Mol. Biomol. Spectrosc., 63, 669 (2006); https://doi.org/10.1016/j.saa.2005.06.016
M. Aljahdali and A. El-Sherif, Synthesis, Characterization, Molecular Modeling and Biological Activity of Mixed Ligand Complexes of Cu(II), Ni(II) and Co(II) based on 1,10-Phenanthroline and Novel Thiosemicarbazone, Inorg. Chim. Acta, 40, 758 (2013); https://doi.org/10.1016/j.ica.2013.06.040
V.S. Shivankar, R.B. Vaidya, S.R. Dharwadkar and N.V. Thakkar, Synthesis, Characterization, and Biological Activity of Mixed Ligand Co(II) Complexes of 8-Hydroxyquinoline and Some Amino Acids, Synth. React. Inorg. Met.-Org. Chem., 33, 1597 (2003); https://doi.org/10.1081/SIM-120025443
A. Adkhis, O. Benali-Baïtich, M.A. Khan and G. Bouet, Synthesis, Characterization and Thermal Behaviour of Mixed-Ligand Complexes of Cobalt(III) with Dimethylglyoxime and Some Amino Acids, Synth. React. Inorg. Met.-Org. Chem., 30, 1849 (2000); https://doi.org/10.1080/00945710009351873
M.S.S. Babu, K.H. Reddy and P.G. Krishna, Synthesis, Characterization, DNA Interaction and Cleavage Activity of New Mixed Ligand Copper(II) Complexes with Heterocyclic Bases, Polyhedron, 26, 572 (2007); https://doi.org/10.1016/j.poly.2006.08.026
K.H. Reddy, P.S. Reddy and P.R. Babu, Nuclease Activity of Mixed Ligand Complexes of Copper(II) with Heteroaromatic Derivatives and Picoline, Transition Met. Chem., 25, 505 (2000); https://doi.org/10.1023/A:1007038514536
M. Pragathi and K.H. Reddy, Synthesis, Crystal Structures, DNA Binding and Cleavage Activity of Water Soluble Mono and Dinuclear Copper(II) Complexes with Tridentate Ligands, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010
W.J. Geary, The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
H.S. Seleem, M. Mostafa, M. Saif and A. Amin, Copper(II)-Complexes of an Isatinic Quinolyl Hydrazone-Anion Effect, Res. J. Chem. Sci., 3, 86 (2013).
E. Szlyk, A. Surdykowski, M. Barwiolek and E. Larsen, Spectroscopy and Stereochemistry of the Optically Active Copper(II), Cobalt(II) and Nickel(II) Complexes with Schiff Bases N,N¢-(1R,2R)-(-)-1,2-Cyclohexylenebis(3-methylbenzylideneiminato) and N,N¢-(1R,2R)-(-)-1,2-Cyclohexylenebis(5-methylbenzylideneiminato), Polyhedron, 21, 2711 (2002); https://doi.org/10.1016/S0277-5387(02)01273-1
L. Mitu, N. Raman, A. Kriza, N. Stanica and M. Dianu, Synthesis, Characterization and Antimicrobial Activity of Cu(II), Ni(II), Co(II), Zn(II) Complexes with Isonicotinoylhydrazone-4-benzyloxybenzalde-hyde, Asian J. Chem., 21, 5749 (2009).
P. Chattopadhyay and C. Sinha, Synthesis and Characterization of Uranyl Complexes and their Peroxo Derivatives with some ThioSchiff Bases, Indian. J. Chem A, 35, 523 (1996); https://doi.org/nopr.niscair.res.in/handle/123456789/41355
B. Dede, I. Ozmen and F. Karipcin, Synthesis, Characterization, Catalase Functions and DNA Cleavage Studies of New Homo and Heteronuclear Schiff Base Copper(II) Complexes, Polyhedron, 28, 3967 (2009); https://doi.org/10.1016/j.poly.2009.09.020
C. Lihua, H. Peizhi, D. Xialan, Z. Bo and Z. Xiaoxcong, Synthesis and Characterization of Open-Ring Complexes Formed in the Reaction of Lanthanides(III) with Salicyladhehyde Schiff Base Containing Pyridine and Amide Bridge, Asian J. Chem., 17, 969 (2005).
D. Kivelson and R. Neiman, ESR Studies on the Bonding in Copper Complexes, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880
K.K. Narang and P.V. Singh, E.S.R. Studies on Acylhydrazine and Hydrazone Copper(II) Sulfate Complexes, Transition Met. Chem., 21, 507 (1996); https://doi.org/10.1007/BF00229701
I.M. Procter, B.J. Hathaway and P. Nicholls, The Electronic Properties and Stereochemistry of the Copper(II) Ion. Part I. Bis(ethylenediamine)-copper(II) Complexes, J. Chem. Soc. A, 1678 (1968); https://doi.org/10.1039/j19680001678
A.S. Kumbhar, S.B. Padhye, D.X. West and A.E. Liberta, Electro-chemical Studies of Copper(II) 2-Acetylpyridine4 N-Dialkylthiosemi-carbazones. Relation to their Spectral, Magnetic and Biological Properties, Transition Met. Chem., 16, 276 (1991); https://doi.org/10.1007/BF01032852
S. Usha and M. Palaniandavar, Influence of Chelate-ring Size and Number of Sulfur-donor Atoms on Spectra and Redox Behaviour of Copper(II) Bis(benzimidazolyl) Tetra- and Penta-thloether Complexes, J. Chem. Soc., Dalton Trans., 15, 2277 (1994); https://doi.org/10.1039/DT9940002277
M. Sirajuddin, S. Ali and A. Badshah, Drug-DNA interactions and their Study by UV-Visible, Fluorescence Spectroscopies and Cyclic Voltametry, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013