Main Article Content

Abstract

Heterolyptic metal complexes having the composition M(Bpy)Cl2 (where, M = Cu(II), Ni(II) and Co(II); Bpy = 2,2′-bipyridyl) were reacted with 2-acetylthiophene-4-phenyl-3-thiosemicarbazone (ATPT) to produce bivalent metal complexes with molecular formula M(Bpy)(ATPT)Cl·H2O. The complexes were characterized using physical (molar conductivity) and spectral (mass spectra, infrared and electronic spectroscopies) methods. Electrochemical behaviour of the complexes was revealed using cyclic voltammetry. The Cu(II)/Cu(I) couple complexes show a quasi-reversible cyclic voltammetric responses. The DNA binding properties of complexes were determined through absorption UV-visible spectrophotometry. Furthermore, the agar well diffusion method was used to screen the metal(II) complexes for their antibacterial activity against pathogenic bacterial strains, namely Gram negative strains such as Escherichia coli and Klebsiella pneumonia and Gram positve strains such as Staphylococcus aureus and Bacillus cereus. The synthesized Cu(Bpy)(ATPT)]Cl·H2O complex strongly inhibits bacteria compared with other complexes.

Keywords

Heterolyptic metal complexes Thiosemicarbazone 2 2′-Bipyridyl DNA binding Antibacterial activity.

Article Details

How to Cite
Srinivasulu, K., Hussain Reddy, K., Dhanalakshmi, D., Anuja, K., & Nagamani, Y. (2021). Spectral Characterization, DNA Binding and Antibacterial Studies of Heterolyptic Metal Complexes with 2-Acetylthiophene-4-phenyl-3-thiosemicarbazone and 2,2′-Bipyridyl. Asian Journal of Organic & Medicinal Chemistry, 6(2), 84–91. https://doi.org/10.14233/ajomc.2021.AJOMC-P318

References

  1. P. Parameshwara, J. Karthikeyan, A.N. Shetty and P. Shetty, 4-(N,N-Diethylamino)benzaldehyde Thiosemicarbazone in the Spectrophoto-metric Determination of Palladium, Ann. Chim., 97, 1097 (2007); https://doi.org/10.1002/adic.200790093
  2. S.L. Narayana, S.A. Reddy, K.J. Reddy, S.O. Baek and A.V. Reddy, A Critical Review on Analytical and Biological Applications of Thio- and Phenylthiosemicarbazones, Asian J. Chem., 24, 1889 (2012).
  3. C. Bonaccorso, T. Marzo and D. La Mendola, Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review, Pharmaceuticals, 13, 4 (2020); https://doi.org/10.3390/ph13010004
  4. H. Beraldo and D. Gambinob, The Wide Pharmacological Versatility of Semicarbazones, Thiosemicarbazones and Their Metal Complexes, Mini-Rev. Med. Chem., 4, 31 (2004); https://doi.org/10.2174/1389557043487484
  5. A. Karaküçük-Iyidogan, D. Tasdemir, E.E. Oruç-Emre and J. Balzarini, Novel Platinum(II) and Palladium(II) Complexes of Thiosemicarbazones Derived from 5-Substituted Thiophene-2-carboxaldehydes and their Antiviral and Cytotoxic Activities, Eur. J. Med. Chem., 46, 5616 (2011); https://doi.org/10.1016/j.ejmech.2011.09.031
  6. K.A. Wood, W.L. Wong and M.I. Saunders, [64Cu]diacetyl-bis(N4-methyl-thiosemicarbazone)-A Radiotracer for Tumor Hypoxia, Nucl. Med. Biol., 35, 393 (2008); https://doi.org/10.1016/j.nucmedbio.2008.02.002
  7. M.S. Refat, I.M. El-Deen, Z.M. Anwer and S. El-Ghol, Bivalent Transition Metal Complexes of Coumarin-3-yl Thiosemicarbazone Derivatives: Spectroscopic, Antibacterial Activity and Thermogravi-metric Studies, J. Mol. Struct., 920, 149 (2009); https://doi.org/10.1016/j.molstruc.2008.10.059
  8. V. Mahalingam, N. Chitrapriya, F.R. Fronczek and K. Natarajan, New Ru(II)–DMSO Complexes of ON/SN Chelates: Synthesis, Behaviour of Schiff Bases towards Hydrolytic Cleavage of C=N Bond, Electro-chemistry and Biological Activities, Polyhedron, 29, 3363 (2010); https://doi.org/10.1016/j.poly.2010.09.019
  9. P. Chellan, S. Nasser, L. Vivas, K. Chibale and G.S. Smith, Cyclo-palladated Complexes Containing Tridentate Thiosemicarbazone Ligands of Biological Significance: Synthesis, Structure and Antimalarial Activity, J. Organomet. Chem., 695, 2225 (2010); https://doi.org/10.1016/j.jorganchem.2010.06.010
  10. A. Pérez-Rebolledo, L.R. Teixeira, A.A. Batista, A.S. Mangrich, G. Aguirre, H. Cerecetto, M. González, P. Hernández, A.M. Ferreira and N.L. Speziali, 4-Nitroacetophenone-Derived Thiosemicarbazones and their Copper(II) Complexes with Significant in vitro Anti-Trypanosomal Activity, Eur. J. Med. Chem., 43, 939 (2008); https://doi.org/10.1016/j.ejmech.2007.06.020
  11. I.J. Kang L.W. Wang, T. Hsu, A.Yueh, A. Lee, C.C. Lee, Y.C. Lee, C.Y. Chao, Y.S. Shih and S. R. Chern, Isatin-b-thiosemicarbazones as Potent Herpes simplex Virus Inhibitors, Bioorg. Med. Chem. Lett., 21, 1948 (2011); https://doi.org/10.1016/j.bmcl.2011.02.037
  12. B. Zhang, H. Luo, Q. Xu, L. Lin and B. Zhang, Antitumor Activity of a trans-Thiosemicarbazone Schiff Base Palladium(II) Complex on Human Gastric Adenocarcinoma Cells, Oncotarget, 8, 13620 (2017); https://doi.org/10.18632/oncotarget.14620
  13. C.M. Nutting, C.M.L. van Herpen, A.B. Miah, S.A. Bhide, J.-P. Machiels, J. Buter, C. Kelly, D. de Raucourt and K.J. Harrington, Phase II study of 3-AP Triapine in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma, J. Ann. Oncol., 20, 1275 (2009); https://doi.org/10.1093/annonc/mdn775
  14. B. Ma, B.C. Goh, E.H. Tan, K.C. Lam, R. Soo, S.S. Leong, L.Z. Wang, F. Mo, A.T.C. Chan, B. Zee and T. Mok, A Multicenter Phase II Trial of 3-aAminopyridine-2-carboxaldehyde Thiosemicarbazone (3-AP, Triapine®) and Gemcitabine in Advanced Non-Small-Cell Lung Cancer with Pharmacokinetic Evaluation using Peripheral Blood Mononuclear Cells, Invest. New Drugs, 26, 169 (2008); https://doi.org/10.1007/s10637-007-9085-0
  15. C. Krishnamurthy, L.A. Byran and D.H. Petering, Effects of Ethylene-diaminetetraacetic Acid and 1,10-Phenanthroline on Cell Proliferation and DMA Synthesis of Ehrlich Ascites Cells, Cancer Res., 40, 4092 (1980).
  16. N.B.L. Prasad, Ph.D thesis, Spectrophotometric Determination of Cu(II) and Ni(II) in Edible Oils using Oximethiosemicarbazones, Sri Krishnadevaraya University, Ananthapuramu, India (2001).
  17. G.M. de Lima, J.L. Neto, H. Beraldo, H.G.L. Siebald and D.J. Duncalf, Structural and Spectral Studies of Thiosemicarbazones Derived from 2-Acetylthiophene, J. Mol. Struct., 604, 287 (2002); https://doi.org/10.1016/S0022-2860(01)00664-0
  18. M.S. Rao N.B.L. Prasad and K.H. Reddy, Spectrophotometric Determination of Copper(II) in Alloys and Edible Oils using 2-Acetyl-thiophene Thiosemicarbazone, Indian J. Chem., 45A, 1659 (2006).
  19. J.L. Neto, G.M. de Lima and H. Beraldo, Platinum and Palladium Complexes of Thiosemicarbazones Derived of 2-Acetylthiophene: Synthesis and Spectral Studies, Spectrochim. Acta A Mol. Biomol. Spectrosc., 63, 669 (2006); https://doi.org/10.1016/j.saa.2005.06.016
  20. M. Aljahdali and A. El-Sherif, Synthesis, Characterization, Molecular Modeling and Biological Activity of Mixed Ligand Complexes of Cu(II), Ni(II) and Co(II) based on 1,10-Phenanthroline and Novel Thiosemicarbazone, Inorg. Chim. Acta, 40, 758 (2013); https://doi.org/10.1016/j.ica.2013.06.040
  21. V.S. Shivankar, R.B. Vaidya, S.R. Dharwadkar and N.V. Thakkar, Synthesis, Characterization, and Biological Activity of Mixed Ligand Co(II) Complexes of 8-Hydroxyquinoline and Some Amino Acids, Synth. React. Inorg. Met.-Org. Chem., 33, 1597 (2003); https://doi.org/10.1081/SIM-120025443
  22. A. Adkhis, O. Benali-Baïtich, M.A. Khan and G. Bouet, Synthesis, Characterization and Thermal Behaviour of Mixed-Ligand Complexes of Cobalt(III) with Dimethylglyoxime and Some Amino Acids, Synth. React. Inorg. Met.-Org. Chem., 30, 1849 (2000); https://doi.org/10.1080/00945710009351873
  23. M.S.S. Babu, K.H. Reddy and P.G. Krishna, Synthesis, Characterization, DNA Interaction and Cleavage Activity of New Mixed Ligand Copper(II) Complexes with Heterocyclic Bases, Polyhedron, 26, 572 (2007); https://doi.org/10.1016/j.poly.2006.08.026
  24. K.H. Reddy, P.S. Reddy and P.R. Babu, Nuclease Activity of Mixed Ligand Complexes of Copper(II) with Heteroaromatic Derivatives and Picoline, Transition Met. Chem., 25, 505 (2000); https://doi.org/10.1023/A:1007038514536
  25. M. Pragathi and K.H. Reddy, Synthesis, Crystal Structures, DNA Binding and Cleavage Activity of Water Soluble Mono and Dinuclear Copper(II) Complexes with Tridentate Ligands, Inorg. Chim. Acta, 413, 174 (2014); https://doi.org/10.1016/j.ica.2014.01.010
  26. W.J. Geary, The Use of Conductivity Measurements in Organic Solvents for the Characterization of Coordination Compounds, Coord. Chem. Rev., 7, 81 (1971); https://doi.org/10.1016/S0010-8545(00)80009-0
  27. H.S. Seleem, M. Mostafa, M. Saif and A. Amin, Copper(II)-Complexes of an Isatinic Quinolyl Hydrazone-Anion Effect, Res. J. Chem. Sci., 3, 86 (2013).
  28. E. Szlyk, A. Surdykowski, M. Barwiolek and E. Larsen, Spectroscopy and Stereochemistry of the Optically Active Copper(II), Cobalt(II) and Nickel(II) Complexes with Schiff Bases N,N¢-(1R,2R)-(-)-1,2-Cyclohexylenebis(3-methylbenzylideneiminato) and N,N¢-(1R,2R)-(-)-1,2-Cyclohexylenebis(5-methylbenzylideneiminato), Polyhedron, 21, 2711 (2002); https://doi.org/10.1016/S0277-5387(02)01273-1
  29. L. Mitu, N. Raman, A. Kriza, N. Stanica and M. Dianu, Synthesis, Characterization and Antimicrobial Activity of Cu(II), Ni(II), Co(II), Zn(II) Complexes with Isonicotinoylhydrazone-4-benzyloxybenzalde-hyde, Asian J. Chem., 21, 5749 (2009).
  30. P. Chattopadhyay and C. Sinha, Synthesis and Characterization of Uranyl Complexes and their Peroxo Derivatives with some ThioSchiff Bases, Indian. J. Chem A, 35, 523 (1996); https://doi.org/nopr.niscair.res.in/handle/123456789/41355
  31. B. Dede, I. Ozmen and F. Karipcin, Synthesis, Characterization, Catalase Functions and DNA Cleavage Studies of New Homo and Heteronuclear Schiff Base Copper(II) Complexes, Polyhedron, 28, 3967 (2009); https://doi.org/10.1016/j.poly.2009.09.020
  32. C. Lihua, H. Peizhi, D. Xialan, Z. Bo and Z. Xiaoxcong, Synthesis and Characterization of Open-Ring Complexes Formed in the Reaction of Lanthanides(III) with Salicyladhehyde Schiff Base Containing Pyridine and Amide Bridge, Asian J. Chem., 17, 969 (2005).
  33. D. Kivelson and R. Neiman, ESR Studies on the Bonding in Copper Complexes, J. Chem. Phys., 35, 149 (1961); https://doi.org/10.1063/1.1731880
  34. K.K. Narang and P.V. Singh, E.S.R. Studies on Acylhydrazine and Hydrazone Copper(II) Sulfate Complexes, Transition Met. Chem., 21, 507 (1996); https://doi.org/10.1007/BF00229701
  35. I.M. Procter, B.J. Hathaway and P. Nicholls, The Electronic Properties and Stereochemistry of the Copper(II) Ion. Part I. Bis(ethylenediamine)-copper(II) Complexes, J. Chem. Soc. A, 1678 (1968); https://doi.org/10.1039/j19680001678
  36. A.S. Kumbhar, S.B. Padhye, D.X. West and A.E. Liberta, Electro-chemical Studies of Copper(II) 2-Acetylpyridine4 N-Dialkylthiosemi-carbazones. Relation to their Spectral, Magnetic and Biological Properties, Transition Met. Chem., 16, 276 (1991); https://doi.org/10.1007/BF01032852
  37. S. Usha and M. Palaniandavar, Influence of Chelate-ring Size and Number of Sulfur-donor Atoms on Spectra and Redox Behaviour of Copper(II) Bis(benzimidazolyl) Tetra- and Penta-thloether Complexes, J. Chem. Soc., Dalton Trans., 15, 2277 (1994); https://doi.org/10.1039/DT9940002277
  38. M. Sirajuddin, S. Ali and A. Badshah, Drug-DNA interactions and their Study by UV-Visible, Fluorescence Spectroscopies and Cyclic Voltametry, J. Photochem. Photobiol. B, 124, 1 (2013); https://doi.org/10.1016/j.jphotobiol.2013.03.013