Main Article Content
Abstract
A series of 5-(5-bromobenzofuran-2-yl)-substituted 1,3,4-oxadiazole-2-thiol derivatives (4a-d) and substituted benzylidene-3-methyl-1-(5-bromobenzofuran-2-carbonyl)-1H-pyrazol-5(4H)-one derivatives (6a-d) have been synthesized in good yields and characterized by IR and NMR analyses. Auto Dock 4.0/ADT program was used to investigate binding interaction of oxadiazole and pyrazole derivatives to DNA GyrB. DNA gyrase of Mycobacterium tuberculosis (MTB) is a type II topoisomerase and well-established and validated target for the development of novel therapeutics. The search was based on the Lamarckian genetic algorithm and the results were analyzed using binding energy. Analysis was based on lowest docked energy and inhibition constant values. Among the tested compounds 4b, 6b and 6c derivatives of oxadiazole and pyrazole showed highest binding energy with the lowest inhibition constant. From the observed results, it is concluded that compounds 4b, 6b and 6c showed more affinity to DNA GyrB protein.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- V. Bhowruth, L.G. Dover and G.S. Besra, Tuberculosis Research in the European Union: Past Achievements and Future Challenges, Prog. Med. Chem., 45, 169 (2007); https://doi.org/10.1016/S0079-6468(06)45504-1
- H. Lang, G. Quaglio and O. Olesen, Tuberculosis Research in the European Union: Past Achievements and Future Challenges, Tuberculosis, 90, 1 (2010); https://doi.org/10.1016/j.tube.2009.10.002
- W.H.O Global Tuberculosis Report (2017).
- L.G. Dover and G.D. Coxon, Current Status and Research Strategies in Tuberculosis Drug Development, J. Med. Chem., 54, 6157 (2011); https://doi.org/10.1021/jm200305q
- Beena and D.S. Rawat, Antituberculosis Drug Research: A Critical Overview, Med. Res. Rev., 33, 693 (2013); https://doi.org/10.1002/med.21262
- S.H. Pattanashetty, K.M. Hosamani and D.A. Barretto, Microwave Assisted Synthesis, Computational Study and Biological Evaluation of Novel Quinolin-2(1H)-one based Pyrazoline Hybrids, Chem. Data Collect., 15-16, 184 (2018); https://doi.org/10.1016/j.cdc.2018.06.003
- P.S. Song and K.J. Jr Tapley Jr., Photochemistry and Photobiology of Psoralens, Photochem. Photobiol., 29, 1177 (1979); https://doi.org/10.1111/j.1751-1097.1979.tb07838.x
- F.P. Gasparro, R. Dallamico, D. Goldminz, E. Simmons and D. Weingold, Molecular Aspects of Extracorporeal Photochemotherapy, Yale J. Biol. Med., 62, 579 (1989).
- S. Caffieri, Furocoumarin Photolysis: Chemical and Biological Aspects, Photochem. Photobiol. Sci., 1, 149 (2002); https://doi.org/10.1039/b107329j
- L. Santana, E. Uriarte, F. Roleira, N. Milhazes and F. Borges, Furocoumarins in Medicinal Chemistry. Synthesis, Natural Occurrence and Biological Activity, Curr. Med. Chem., 11, 3239 (2004); https://doi.org/10.2174/0929867043363721
- C. Ryu, A. Song, J.Y. Lee, J. Hong, J.H. Yoon and A. Kim, Synthesis and Antifungal Activity of Benzofuran-5-ols, Bioorg. Med. Chem. Lett., 20, 6777 (2010); https://doi.org/10.1016/j.bmcl.2010.08.129
- B.F. Abdel-Wahab, H.A. Abdel-Aziz and E.M. Ahmed, Synthesis and Antimicrobial Evaluation of 1-(Benzofuran-2-yl)-4-nitro-3-aryl-butan-1-ones and 3-(Benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles, Eur. J. Med. Chem., 44, 2632 (2009); https://doi.org/10.1016/j.ejmech.2008.09.029
- F. Pan and T.C. Wang, Studies of Benzofurans as Potential Anti-microbial Agents I. Synthesis of Coumarilic Acid and its Derivatives, J. Chin. Chem. Soc. (Taipei), 8, 220 (1961); https://doi.org/10.1002/jccs.196100023
- F. Pan and T.C. Wang, Studies of Benzofurans as Potential Anti-microbial Agents. II. Synthesis of ß-(2-Benzofuryl)-Acrylic Acid and its Derivatives, J. Chin. Chem. Soc. (Taipei), 8, 374 (1961); https://doi.org/10.1002/jccs.196100038
- K. Manna and Y.K. Agrawal, Design, Synthesis, and Antitubercular Evaluation of Novel Series of 3-Benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-Benzofuran-5-aryl-1-pyrazolylcarbonyl-4-oxo-naphthyridin Analogs, Eur. J. Med. Chem., 45, 3831 (2010); https://doi.org/10.1016/j.ejmech.2010.05.035
- M. Brændvang, V. Bakken and L.-L. Gundersen, Synthesis, Structure and Antimycobacterial Activity of 6-[1(3H)-Isobenzofuranylidenemethyl]-purines and Analogs, Bioorg. Med. Chem. Lett., 17, 6512 (2009); https://doi.org/10.1016/j.bmc.2009.08.012
- S.M. Bakunova, S.A. Bakunov, T. Wenzler, T. Barszcz, K.A. Werbovetz, R. Brun, J.E. Hall and R.R. Tidwell, Synthesis and in vitro Antiprotozoal Activity of Bisbenzofuran Cations, J. Med. Chem., 50, 5807 (2007); https://doi.org/10.1021/jm0708634
- F.A. Ragab, N.M. Eid, G.S. Hassan and Y.M. Nissan, Synthesis and Anti-inflammatory Activity of Some Benzofuran and Benzopyran-4-one Derivatives, Chem. Pharm. Bull. (Tokyo), 60, 110 (2012); https://doi.org/10.1248/cpb.60.110
- K.M. Dawood, H. Abdel-Gawad, E.A. Rageb, M. Ellithey and H.A. Mohamed, Synthesis, Anticonvulsant and Anti-inflammatory Evaluation of Some New Benzotriazole and Benzofuran-based Heterocycles, Bioorg. Med. Chem., 14, 3672 (2006); https://doi.org/10.1016/j.bmc.2006.01.033
- O.M. Abdelhafez, K.M. Amin, H.I. Ali, M.M. Abdalla and E.Y. Ahmed, Design, Synthesis and Anticancer Activity of Benzofuran Derivatives Targeting VEGFR-2 Tyrosine Kinase, RSC Adv., 4, 11569 (2014); https://doi.org/10.1039/c4ra00943f
- S.M. Rida, S.A. El-Hawash, H.T. Fahmy, A.A. Hazza and M.M. El-Meligy, Synthesis and in vitro Evaluation of Some Novel Benzofuran Derivatives as Potential Anti-HIV-1, Anticancer and Antimicrobial Agents, Arch. Pharm. Res., 29, 16 (2006); https://doi.org/10.1007/BF02977463
- S. Radl, P. Hezky, P. Konvicka and I. Krejci, Synthesis and Analgesic Activity of Some Substituted 1-Benzofurans and 1-Benzothiophenes, Coll. Czech. Chem. Commun., 65, 1093 (2000); https://doi.org/10.1135/cccc20001093
- S. P. Gibson and C. Laurate, Benzofuran Antiparasitic Agents, WO/2008/102232 (2008).
- K.V. Sashidhara, R.K. Modukuri, R. Sonkar, K.B. Rao and G. Bhatia, Hybrid Benzofuran-Bisindole Derivatives: New Prototypes with Promising Anti-Hyperlipidemic Activities, Eur. J. Med. Chem., 68, 38 (2013); https://doi.org/10.1016/j.ejmech.2013.07.009
- S.S. Rindhe, M.A. Rode and B.K. Karale, New Benzofuran Derivatives as an Antioxidant Agent, Indian J. Pharm. Sci., 72, 231 (2010); https://doi.org/10.4103/0250-474X.65022
- K.A. Reddy, B.B. Lohray, V. Bhushan, A.C. Bajji, K.V. Reddy, P.R. Reddy, T.H. Krishna, I.N. Rao, H.K. Jajoo, N.V.S.M. Rao, R. Chakrabarti, T. Dileepkumar and R. Rajagopalan, J. Med. Chem., 42, 1927 (1999); https://doi.org/10.1021/jm980549x
- B.C. Ross, D. Middlemiss, D.I.C. Scopes, T.I.M. Jack, K.S. Cardwell, M.D. Dowle, J.G. Montana, M. Pass and D.B. Judd, Anti-hypertensive Benzofuran Derivatives Substituted by N-Imidazolyl-methyl Groups which are Condensed with Optionally Nitrogen Containing, Six-Membered Rings, EP0514197A1 (1992).
- S. Ravikumar, M. Gnanadesigan, A. Saravanan, N. Monisha, V. Brindha and S. Muthumari, Antagonistic Properties of Seagrass Associated Streptomyces sp. RAUACT-1: A Source for Anthraquinone Rich Compound, Asian Pac. J. Trop. Med., 5, 887 (2012); https://doi.org/10.1016/S1995-7645(12)60165-5
- M. Ono, M.P. Kung, C. Hou and H.F. Kung, Benzofuran Derivatives as Ab-Aggregate-Specific Imaging Agents for Alzheimer’s Disease, Nucl. Med. Biol., 29, 633 (2002); https://doi.org/10.1016/S0969-8051(02)00326-8
- M.B. Isman, P. Proksch and L. Witte, Metabolism and Excretion of Acetylchromenes by the Migratory Grasshopper, Arch. Insect Biochem. Physiol., 6, 109 (1987); https://doi.org/10.1002/arch.940060205
- J.T. Arnason, B.J.R. Philogene and P. Morand, Insecticides of Plant Origin; ACS Symposium Series 387, Washington DC, pp 44-58 (1989).
- Y. He, J. Xu, Z.H. Yu, A.M. Gunawan, L. Wu, L. Wang and Z.Y. Zhang, Discovery and Evaluation of Novel Inhibitors of Mycobacterium Protein Tyrosine Phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic Acid Scaffold, J. Med. Chem., 56, 832 (2013); https://doi.org/10.1021/jm301781p
- J.C. Sacchettini, A. Aggarwal and M.K. Parai, Substituted Benzofuran Derivatives as Novel Antimycobacterial Agents, Patent WO 2016172498 A1 (2016).
- J. Renuka, K.I. Reddy, K. Srihari, V.U. Jeankumar, M. Shravan, J.P. Sridevi, P. Yogeeswari, K.S. Babu and D. Sriram, Design, Synthesis, Biological Evaluation of Substituted Benzofurans as DNA GyraseB Inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem., 22, 4924 (2014); https://doi.org/10.1016/j.bmc.2014.06.041
- B.R. Thorat, B. Nazirkar, V.B. Thorat, M. Mandewale, A. Nagarsekar and R.S. Yamgar, Synthesis, Molecular Docking and Anti-TB Activity of 1-Benzofuran-2-Carbohydrazide, J. Chem. Sci. Photon, 110, 279 (2016).
- B. Nazirkar, U. Patil, B. Thorat, M. Mandewale, H. Gaokar, A. Pandhare and R. Yamgar, Synthesis and Anti-tubercular Study of Some Transition Metal Complexes of Hydrazone Derivatives Derived from Benzofuran-2-carbohydrazide, Der Pharm. Chem., 9, 45 (2017).
- S. Santoshkumar, N.D. Satyanarayana, R. Anantacharya and P. Sameer, Synthesis, Antimicrobial, Antitubercular and Cheminformatic Studies of 2-(1-Benzofuran-2-yl)-N¢-[(3Z)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]quinoline-4-carbohydrazide and its Derivatives, Int. J. Pharm. Pharm. Sci., 9, 260 (2017); https://doi.org/10.22159/ijpps.2017v9i5.17564
- K. Kumara, K.P. Harish, N. Shivalingegowda, H.C. Tandon, K.N. Mohana and N.K. Lokanath, Crystal Structure Studies, Hirshfeld Surface Analysis and DFT Calculations of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]Oxadiazol-2-yl]piperazine Derivatives, Chem. Data Collect., 11-12, 40 (2017); https://doi.org/10.1016/j.cdc.2017.07.007
- C.R.W. Guimaraes, D.L. Boger and W.L. Jorgensen, Elucidation of Fatty Acid Amide Hydrolase Inhibition by Potent a-Ketoheterocycle Derivatives from Monte Carlo Simulations, J. Am. Chem. Soc., 127, 17377 (2005); https://doi.org/10.1021/ja055438j
- N.C. Desai, N. Bhatt, H. Somani and A. Trivedi, Synthesis, Antimicrobial and Cytotoxic Activities of Some Novel Thiazole Clubbed 1,3,4-Oxadiazoles, Eur. J. Med. Chem., 67, 54 (2013); https://doi.org/10.1016/j.ejmech.2013.06.029
- K.P. Harish, K.N. Mohana, L. Mallesha and B.N. Prasanna Kumar, Synthesis of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine Derivatives and Evaluation of their in vivo Anticonvulsant Activity, Eur. J. Med. Chem., 65, 276 (2013); https://doi.org/10.1016/j.ejmech.2013.04.054
- H. Rajak, B. Singh Thakur, A. Singh, K. Raghuvanshi, A.K. Sah, R. Veerasamy, P.C. Sharma, R. Singh Pawar and M.D. Kharya, Novel Limonene and Citral Based 2,5-Disubstituted-1,3,4-oxadiazoles: A Natural Product Coupled Approach to Semicarbazones for Antiepileptic Activity, Bioorg. Med. Chem. Lett., 23, 864 (2013); https://doi.org/10.1016/j.bmcl.2012.11.051
- D.R. Guda, S.J. Park, M.W. Lee, T.J. Kim and M.E. Lee, Syntheses and Anti-allergic Activity of 2-((bis(Trimethylsilyl)methylthio/methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles, Eur. J. Med. Chem., 62, 84 (2013); https://doi.org/10.1016/j.ejmech.2012.12.035
- J. Sun, H. Zhu, Z.M. Yang and H.L. Zhu, Synthesis, Molecular Modeling and Biological Evaluation of 2-Aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione Quinolone Derivatives as Novel Anticancer agent, Eur. J. Med. Chem., 60, 23 (2013); https://doi.org/10.1016/j.ejmech.2012.11.039
- M.J. Ahsan, J.G. Samy, C.B. Jain, K.R. Dutt, H. Khalilullah and M.S. Nomani, Discovery of Novel Antitubercular 1,5-Dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one Analogues, Bioorg. Med. Chem. Lett., 22, 969 (2012); https://doi.org/10.1016/j.bmcl.2011.12.014
- F. Macaev, Z. Ribkovskaia, S. Pogrebnoi, V. Boldescu, G. Rusu, N. Shvets, A. Dimoglo, A. Geronikaki and R. Reynolds, The Structure–Antituberculosis Activity Relationships Study in a Series of 5-Aryl-2-thio-1,3,4-oxadiazole Derivatives, Bioorg. Med. Chem., 19, 6792 (2011); https://doi.org/10.1016/j.bmc.2011.09.038
- M. Mahesh, G. Bheemaraju, G. Manjunath and P. Venkata Ramana, Synthesis of New Oxadiazole, Pyrazole and Pyrazolin-5-one Bearing 2-((4-Methyl-2-oxo-2H-chromen-7-yl)oxy)acetohydrazide Analogs as Potential Antibacterial and Antifungal agents, Ann. Pharm. Fr., 74, 34 (2016); https://doi.org/10.1016/j.pharma.2015.07.002
- G. Manjunath, G. Bheemaraju, M. Mahesh and P. Venkata Ramana, Synthesis of New 5-((2-(Substituted phenoxymethyl)-1H-benzo[d]-imidazol-1-yl)methyl)-1,3,4-oxadiazole-2-thiol: A Novel Class of Potential Antibacterial and Antifungal Agents, Ann. Pharm. Fr., 73, 452 (2015); https://doi.org/10.1016/j.pharma.2015.06.003
- P.V.B. Reddy, V. Kamala Prasad, G. Manjunath and P. Venkata Ramana, Synthesis, Characterization and Evaluation of Antibacterial Activity of (E)-N¢-(Substituted benzylidene)-2-(2-fluorobenzyl)-5-ethyl-2H-1,2,3-triazole-4-carbohydrazides, Ann. Pharm. Fr., 74, 350 (2016); https://doi.org/10.1016/j.pharma.2016.05.002
- I.J. Manchester, D.D. Dussault, A.J. Rose, A. Boriack-Sjodin, M. Uria-Nickelsen, G. Ioan-nidis, S. Bist, P. Fleming and K.G. Hull, Discovery of a Novel Azaindole Class of Antibacterial Agents Targeting the ATPase Domains of DNA Gyrase and Topoisomerase IV, Bioorg. Med. Chem. Lett., 22, 5150 (2012); https://doi.org/10.1016/j.bmcl.2012.05.128
- V.U. Jeankumar, J. Renuka, P. Santosh, J.P. Sridevi, P. Suryadevara, V. Soni, P. Yogeeswari and D. Sriram, Thiazole-Aminopiperidine Hybrid Analogues: Design and Synthesis of Novel Mycobacterium tuberculosis GyrB inhibitors, Eur. J. Med. Chem., 70, 143 (2013); https://doi.org/10.1016/j.ejmech.2013.09.025
- S.K. Verma, R. Verma, S. Verma, Y. Vaishnav, S.P. Tiwari and K.P. Rakesh, Anti-Tuberculosis Activity and its Structure-Activity Relationship (SAR) Studies of Oxadiazole Derivatives: A Key Review, Eur. J. Med. Chem., 209, 112886 (2021); https://doi.org/10.1016/j.ejmech.2020.112886
- G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:: AID-JCC10>3.0.CO;2-B
- S. Miyamoto and P.A. Kollman, Settle: An Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models, J. Comput. Chem., 13, 952 (1992); https://doi.org/10.1002/jcc.540130805
- T.I. Oprea, A.M. Davis, S.J. Teague and P.D. Leeson, Is There a Difference between Leads and Drugs? A Historical Perspective, J. Chem. Inf. Comput. Sci., 41, 1308 (2001); https://doi.org/10.1021/ci010366a
References
V. Bhowruth, L.G. Dover and G.S. Besra, Tuberculosis Research in the European Union: Past Achievements and Future Challenges, Prog. Med. Chem., 45, 169 (2007); https://doi.org/10.1016/S0079-6468(06)45504-1
H. Lang, G. Quaglio and O. Olesen, Tuberculosis Research in the European Union: Past Achievements and Future Challenges, Tuberculosis, 90, 1 (2010); https://doi.org/10.1016/j.tube.2009.10.002
W.H.O Global Tuberculosis Report (2017).
L.G. Dover and G.D. Coxon, Current Status and Research Strategies in Tuberculosis Drug Development, J. Med. Chem., 54, 6157 (2011); https://doi.org/10.1021/jm200305q
Beena and D.S. Rawat, Antituberculosis Drug Research: A Critical Overview, Med. Res. Rev., 33, 693 (2013); https://doi.org/10.1002/med.21262
S.H. Pattanashetty, K.M. Hosamani and D.A. Barretto, Microwave Assisted Synthesis, Computational Study and Biological Evaluation of Novel Quinolin-2(1H)-one based Pyrazoline Hybrids, Chem. Data Collect., 15-16, 184 (2018); https://doi.org/10.1016/j.cdc.2018.06.003
P.S. Song and K.J. Jr Tapley Jr., Photochemistry and Photobiology of Psoralens, Photochem. Photobiol., 29, 1177 (1979); https://doi.org/10.1111/j.1751-1097.1979.tb07838.x
F.P. Gasparro, R. Dallamico, D. Goldminz, E. Simmons and D. Weingold, Molecular Aspects of Extracorporeal Photochemotherapy, Yale J. Biol. Med., 62, 579 (1989).
S. Caffieri, Furocoumarin Photolysis: Chemical and Biological Aspects, Photochem. Photobiol. Sci., 1, 149 (2002); https://doi.org/10.1039/b107329j
L. Santana, E. Uriarte, F. Roleira, N. Milhazes and F. Borges, Furocoumarins in Medicinal Chemistry. Synthesis, Natural Occurrence and Biological Activity, Curr. Med. Chem., 11, 3239 (2004); https://doi.org/10.2174/0929867043363721
C. Ryu, A. Song, J.Y. Lee, J. Hong, J.H. Yoon and A. Kim, Synthesis and Antifungal Activity of Benzofuran-5-ols, Bioorg. Med. Chem. Lett., 20, 6777 (2010); https://doi.org/10.1016/j.bmcl.2010.08.129
B.F. Abdel-Wahab, H.A. Abdel-Aziz and E.M. Ahmed, Synthesis and Antimicrobial Evaluation of 1-(Benzofuran-2-yl)-4-nitro-3-aryl-butan-1-ones and 3-(Benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles, Eur. J. Med. Chem., 44, 2632 (2009); https://doi.org/10.1016/j.ejmech.2008.09.029
F. Pan and T.C. Wang, Studies of Benzofurans as Potential Anti-microbial Agents I. Synthesis of Coumarilic Acid and its Derivatives, J. Chin. Chem. Soc. (Taipei), 8, 220 (1961); https://doi.org/10.1002/jccs.196100023
F. Pan and T.C. Wang, Studies of Benzofurans as Potential Anti-microbial Agents. II. Synthesis of ß-(2-Benzofuryl)-Acrylic Acid and its Derivatives, J. Chin. Chem. Soc. (Taipei), 8, 374 (1961); https://doi.org/10.1002/jccs.196100038
K. Manna and Y.K. Agrawal, Design, Synthesis, and Antitubercular Evaluation of Novel Series of 3-Benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-Benzofuran-5-aryl-1-pyrazolylcarbonyl-4-oxo-naphthyridin Analogs, Eur. J. Med. Chem., 45, 3831 (2010); https://doi.org/10.1016/j.ejmech.2010.05.035
M. Brændvang, V. Bakken and L.-L. Gundersen, Synthesis, Structure and Antimycobacterial Activity of 6-[1(3H)-Isobenzofuranylidenemethyl]-purines and Analogs, Bioorg. Med. Chem. Lett., 17, 6512 (2009); https://doi.org/10.1016/j.bmc.2009.08.012
S.M. Bakunova, S.A. Bakunov, T. Wenzler, T. Barszcz, K.A. Werbovetz, R. Brun, J.E. Hall and R.R. Tidwell, Synthesis and in vitro Antiprotozoal Activity of Bisbenzofuran Cations, J. Med. Chem., 50, 5807 (2007); https://doi.org/10.1021/jm0708634
F.A. Ragab, N.M. Eid, G.S. Hassan and Y.M. Nissan, Synthesis and Anti-inflammatory Activity of Some Benzofuran and Benzopyran-4-one Derivatives, Chem. Pharm. Bull. (Tokyo), 60, 110 (2012); https://doi.org/10.1248/cpb.60.110
K.M. Dawood, H. Abdel-Gawad, E.A. Rageb, M. Ellithey and H.A. Mohamed, Synthesis, Anticonvulsant and Anti-inflammatory Evaluation of Some New Benzotriazole and Benzofuran-based Heterocycles, Bioorg. Med. Chem., 14, 3672 (2006); https://doi.org/10.1016/j.bmc.2006.01.033
O.M. Abdelhafez, K.M. Amin, H.I. Ali, M.M. Abdalla and E.Y. Ahmed, Design, Synthesis and Anticancer Activity of Benzofuran Derivatives Targeting VEGFR-2 Tyrosine Kinase, RSC Adv., 4, 11569 (2014); https://doi.org/10.1039/c4ra00943f
S.M. Rida, S.A. El-Hawash, H.T. Fahmy, A.A. Hazza and M.M. El-Meligy, Synthesis and in vitro Evaluation of Some Novel Benzofuran Derivatives as Potential Anti-HIV-1, Anticancer and Antimicrobial Agents, Arch. Pharm. Res., 29, 16 (2006); https://doi.org/10.1007/BF02977463
S. Radl, P. Hezky, P. Konvicka and I. Krejci, Synthesis and Analgesic Activity of Some Substituted 1-Benzofurans and 1-Benzothiophenes, Coll. Czech. Chem. Commun., 65, 1093 (2000); https://doi.org/10.1135/cccc20001093
S. P. Gibson and C. Laurate, Benzofuran Antiparasitic Agents, WO/2008/102232 (2008).
K.V. Sashidhara, R.K. Modukuri, R. Sonkar, K.B. Rao and G. Bhatia, Hybrid Benzofuran-Bisindole Derivatives: New Prototypes with Promising Anti-Hyperlipidemic Activities, Eur. J. Med. Chem., 68, 38 (2013); https://doi.org/10.1016/j.ejmech.2013.07.009
S.S. Rindhe, M.A. Rode and B.K. Karale, New Benzofuran Derivatives as an Antioxidant Agent, Indian J. Pharm. Sci., 72, 231 (2010); https://doi.org/10.4103/0250-474X.65022
K.A. Reddy, B.B. Lohray, V. Bhushan, A.C. Bajji, K.V. Reddy, P.R. Reddy, T.H. Krishna, I.N. Rao, H.K. Jajoo, N.V.S.M. Rao, R. Chakrabarti, T. Dileepkumar and R. Rajagopalan, J. Med. Chem., 42, 1927 (1999); https://doi.org/10.1021/jm980549x
B.C. Ross, D. Middlemiss, D.I.C. Scopes, T.I.M. Jack, K.S. Cardwell, M.D. Dowle, J.G. Montana, M. Pass and D.B. Judd, Anti-hypertensive Benzofuran Derivatives Substituted by N-Imidazolyl-methyl Groups which are Condensed with Optionally Nitrogen Containing, Six-Membered Rings, EP0514197A1 (1992).
S. Ravikumar, M. Gnanadesigan, A. Saravanan, N. Monisha, V. Brindha and S. Muthumari, Antagonistic Properties of Seagrass Associated Streptomyces sp. RAUACT-1: A Source for Anthraquinone Rich Compound, Asian Pac. J. Trop. Med., 5, 887 (2012); https://doi.org/10.1016/S1995-7645(12)60165-5
M. Ono, M.P. Kung, C. Hou and H.F. Kung, Benzofuran Derivatives as Ab-Aggregate-Specific Imaging Agents for Alzheimer’s Disease, Nucl. Med. Biol., 29, 633 (2002); https://doi.org/10.1016/S0969-8051(02)00326-8
M.B. Isman, P. Proksch and L. Witte, Metabolism and Excretion of Acetylchromenes by the Migratory Grasshopper, Arch. Insect Biochem. Physiol., 6, 109 (1987); https://doi.org/10.1002/arch.940060205
J.T. Arnason, B.J.R. Philogene and P. Morand, Insecticides of Plant Origin; ACS Symposium Series 387, Washington DC, pp 44-58 (1989).
Y. He, J. Xu, Z.H. Yu, A.M. Gunawan, L. Wu, L. Wang and Z.Y. Zhang, Discovery and Evaluation of Novel Inhibitors of Mycobacterium Protein Tyrosine Phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic Acid Scaffold, J. Med. Chem., 56, 832 (2013); https://doi.org/10.1021/jm301781p
J.C. Sacchettini, A. Aggarwal and M.K. Parai, Substituted Benzofuran Derivatives as Novel Antimycobacterial Agents, Patent WO 2016172498 A1 (2016).
J. Renuka, K.I. Reddy, K. Srihari, V.U. Jeankumar, M. Shravan, J.P. Sridevi, P. Yogeeswari, K.S. Babu and D. Sriram, Design, Synthesis, Biological Evaluation of Substituted Benzofurans as DNA GyraseB Inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem., 22, 4924 (2014); https://doi.org/10.1016/j.bmc.2014.06.041
B.R. Thorat, B. Nazirkar, V.B. Thorat, M. Mandewale, A. Nagarsekar and R.S. Yamgar, Synthesis, Molecular Docking and Anti-TB Activity of 1-Benzofuran-2-Carbohydrazide, J. Chem. Sci. Photon, 110, 279 (2016).
B. Nazirkar, U. Patil, B. Thorat, M. Mandewale, H. Gaokar, A. Pandhare and R. Yamgar, Synthesis and Anti-tubercular Study of Some Transition Metal Complexes of Hydrazone Derivatives Derived from Benzofuran-2-carbohydrazide, Der Pharm. Chem., 9, 45 (2017).
S. Santoshkumar, N.D. Satyanarayana, R. Anantacharya and P. Sameer, Synthesis, Antimicrobial, Antitubercular and Cheminformatic Studies of 2-(1-Benzofuran-2-yl)-N¢-[(3Z)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]quinoline-4-carbohydrazide and its Derivatives, Int. J. Pharm. Pharm. Sci., 9, 260 (2017); https://doi.org/10.22159/ijpps.2017v9i5.17564
K. Kumara, K.P. Harish, N. Shivalingegowda, H.C. Tandon, K.N. Mohana and N.K. Lokanath, Crystal Structure Studies, Hirshfeld Surface Analysis and DFT Calculations of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]Oxadiazol-2-yl]piperazine Derivatives, Chem. Data Collect., 11-12, 40 (2017); https://doi.org/10.1016/j.cdc.2017.07.007
C.R.W. Guimaraes, D.L. Boger and W.L. Jorgensen, Elucidation of Fatty Acid Amide Hydrolase Inhibition by Potent a-Ketoheterocycle Derivatives from Monte Carlo Simulations, J. Am. Chem. Soc., 127, 17377 (2005); https://doi.org/10.1021/ja055438j
N.C. Desai, N. Bhatt, H. Somani and A. Trivedi, Synthesis, Antimicrobial and Cytotoxic Activities of Some Novel Thiazole Clubbed 1,3,4-Oxadiazoles, Eur. J. Med. Chem., 67, 54 (2013); https://doi.org/10.1016/j.ejmech.2013.06.029
K.P. Harish, K.N. Mohana, L. Mallesha and B.N. Prasanna Kumar, Synthesis of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine Derivatives and Evaluation of their in vivo Anticonvulsant Activity, Eur. J. Med. Chem., 65, 276 (2013); https://doi.org/10.1016/j.ejmech.2013.04.054
H. Rajak, B. Singh Thakur, A. Singh, K. Raghuvanshi, A.K. Sah, R. Veerasamy, P.C. Sharma, R. Singh Pawar and M.D. Kharya, Novel Limonene and Citral Based 2,5-Disubstituted-1,3,4-oxadiazoles: A Natural Product Coupled Approach to Semicarbazones for Antiepileptic Activity, Bioorg. Med. Chem. Lett., 23, 864 (2013); https://doi.org/10.1016/j.bmcl.2012.11.051
D.R. Guda, S.J. Park, M.W. Lee, T.J. Kim and M.E. Lee, Syntheses and Anti-allergic Activity of 2-((bis(Trimethylsilyl)methylthio/methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles, Eur. J. Med. Chem., 62, 84 (2013); https://doi.org/10.1016/j.ejmech.2012.12.035
J. Sun, H. Zhu, Z.M. Yang and H.L. Zhu, Synthesis, Molecular Modeling and Biological Evaluation of 2-Aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione Quinolone Derivatives as Novel Anticancer agent, Eur. J. Med. Chem., 60, 23 (2013); https://doi.org/10.1016/j.ejmech.2012.11.039
M.J. Ahsan, J.G. Samy, C.B. Jain, K.R. Dutt, H. Khalilullah and M.S. Nomani, Discovery of Novel Antitubercular 1,5-Dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one Analogues, Bioorg. Med. Chem. Lett., 22, 969 (2012); https://doi.org/10.1016/j.bmcl.2011.12.014
F. Macaev, Z. Ribkovskaia, S. Pogrebnoi, V. Boldescu, G. Rusu, N. Shvets, A. Dimoglo, A. Geronikaki and R. Reynolds, The Structure–Antituberculosis Activity Relationships Study in a Series of 5-Aryl-2-thio-1,3,4-oxadiazole Derivatives, Bioorg. Med. Chem., 19, 6792 (2011); https://doi.org/10.1016/j.bmc.2011.09.038
M. Mahesh, G. Bheemaraju, G. Manjunath and P. Venkata Ramana, Synthesis of New Oxadiazole, Pyrazole and Pyrazolin-5-one Bearing 2-((4-Methyl-2-oxo-2H-chromen-7-yl)oxy)acetohydrazide Analogs as Potential Antibacterial and Antifungal agents, Ann. Pharm. Fr., 74, 34 (2016); https://doi.org/10.1016/j.pharma.2015.07.002
G. Manjunath, G. Bheemaraju, M. Mahesh and P. Venkata Ramana, Synthesis of New 5-((2-(Substituted phenoxymethyl)-1H-benzo[d]-imidazol-1-yl)methyl)-1,3,4-oxadiazole-2-thiol: A Novel Class of Potential Antibacterial and Antifungal Agents, Ann. Pharm. Fr., 73, 452 (2015); https://doi.org/10.1016/j.pharma.2015.06.003
P.V.B. Reddy, V. Kamala Prasad, G. Manjunath and P. Venkata Ramana, Synthesis, Characterization and Evaluation of Antibacterial Activity of (E)-N¢-(Substituted benzylidene)-2-(2-fluorobenzyl)-5-ethyl-2H-1,2,3-triazole-4-carbohydrazides, Ann. Pharm. Fr., 74, 350 (2016); https://doi.org/10.1016/j.pharma.2016.05.002
I.J. Manchester, D.D. Dussault, A.J. Rose, A. Boriack-Sjodin, M. Uria-Nickelsen, G. Ioan-nidis, S. Bist, P. Fleming and K.G. Hull, Discovery of a Novel Azaindole Class of Antibacterial Agents Targeting the ATPase Domains of DNA Gyrase and Topoisomerase IV, Bioorg. Med. Chem. Lett., 22, 5150 (2012); https://doi.org/10.1016/j.bmcl.2012.05.128
V.U. Jeankumar, J. Renuka, P. Santosh, J.P. Sridevi, P. Suryadevara, V. Soni, P. Yogeeswari and D. Sriram, Thiazole-Aminopiperidine Hybrid Analogues: Design and Synthesis of Novel Mycobacterium tuberculosis GyrB inhibitors, Eur. J. Med. Chem., 70, 143 (2013); https://doi.org/10.1016/j.ejmech.2013.09.025
S.K. Verma, R. Verma, S. Verma, Y. Vaishnav, S.P. Tiwari and K.P. Rakesh, Anti-Tuberculosis Activity and its Structure-Activity Relationship (SAR) Studies of Oxadiazole Derivatives: A Key Review, Eur. J. Med. Chem., 209, 112886 (2021); https://doi.org/10.1016/j.ejmech.2020.112886
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:: AID-JCC10>3.0.CO;2-B
S. Miyamoto and P.A. Kollman, Settle: An Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models, J. Comput. Chem., 13, 952 (1992); https://doi.org/10.1002/jcc.540130805
T.I. Oprea, A.M. Davis, S.J. Teague and P.D. Leeson, Is There a Difference between Leads and Drugs? A Historical Perspective, J. Chem. Inf. Comput. Sci., 41, 1308 (2001); https://doi.org/10.1021/ci010366a