Main Article Content

Abstract

A series of 5-(5-bromobenzofuran-2-yl)-substituted 1,3,4-oxadiazole-2-thiol derivatives (4a-d) and substituted benzylidene-3-methyl-1-(5-bromobenzofuran-2-carbonyl)-1H-pyrazol-5(4H)-one derivatives (6a-d) have been synthesized in good yields and characterized by IR and NMR analyses. Auto Dock 4.0/ADT program was used to investigate binding interaction of oxadiazole and pyrazole derivatives to DNA GyrB. DNA gyrase of Mycobacterium tuberculosis (MTB) is a type II topoisomerase and well-established and validated target for the development of novel therapeutics. The search was based on the Lamarckian genetic algorithm and the results were analyzed using binding energy. Analysis was based on lowest docked energy and inhibition constant values. Among the tested compounds 4b, 6b and 6c derivatives of oxadiazole and pyrazole showed highest binding energy with the lowest inhibition constant. From the observed results, it is concluded that compounds 4b, 6b and 6c showed more affinity to DNA GyrB protein.

Keywords

Benofuran-oxadiazole hybrids Benzofuran-pyrazole hybrids DNA GyraseB Tuberculosis Antitubercular activity.

Article Details

How to Cite
Sanjeeva, P., Subba Rao, B., Nagaraju, C., Kamala Prasad, V., & Venkata Ramana, P. (2021). Synthesis, Characterization and Molecular Docking Studies of Substituted Benzofuran and Pyrazole Derivatives. Asian Journal of Organic & Medicinal Chemistry, 6(1), 24–32. https://doi.org/10.14233/ajomc.2021.AJOMC-P306

References

  1. V. Bhowruth, L.G. Dover and G.S. Besra, Tuberculosis Research in the European Union: Past Achievements and Future Challenges, Prog. Med. Chem., 45, 169 (2007); https://doi.org/10.1016/S0079-6468(06)45504-1
  2. H. Lang, G. Quaglio and O. Olesen, Tuberculosis Research in the European Union: Past Achievements and Future Challenges, Tuberculosis, 90, 1 (2010); https://doi.org/10.1016/j.tube.2009.10.002
  3. W.H.O Global Tuberculosis Report (2017).
  4. L.G. Dover and G.D. Coxon, Current Status and Research Strategies in Tuberculosis Drug Development, J. Med. Chem., 54, 6157 (2011); https://doi.org/10.1021/jm200305q
  5. Beena and D.S. Rawat, Antituberculosis Drug Research: A Critical Overview, Med. Res. Rev., 33, 693 (2013); https://doi.org/10.1002/med.21262
  6. S.H. Pattanashetty, K.M. Hosamani and D.A. Barretto, Microwave Assisted Synthesis, Computational Study and Biological Evaluation of Novel Quinolin-2(1H)-one based Pyrazoline Hybrids, Chem. Data Collect., 15-16, 184 (2018); https://doi.org/10.1016/j.cdc.2018.06.003
  7. P.S. Song and K.J. Jr Tapley Jr., Photochemistry and Photobiology of Psoralens, Photochem. Photobiol., 29, 1177 (1979); https://doi.org/10.1111/j.1751-1097.1979.tb07838.x
  8. F.P. Gasparro, R. Dallamico, D. Goldminz, E. Simmons and D. Weingold, Molecular Aspects of Extracorporeal Photochemotherapy, Yale J. Biol. Med., 62, 579 (1989).
  9. S. Caffieri, Furocoumarin Photolysis: Chemical and Biological Aspects, Photochem. Photobiol. Sci., 1, 149 (2002); https://doi.org/10.1039/b107329j
  10. L. Santana, E. Uriarte, F. Roleira, N. Milhazes and F. Borges, Furocoumarins in Medicinal Chemistry. Synthesis, Natural Occurrence and Biological Activity, Curr. Med. Chem., 11, 3239 (2004); https://doi.org/10.2174/0929867043363721
  11. C. Ryu, A. Song, J.Y. Lee, J. Hong, J.H. Yoon and A. Kim, Synthesis and Antifungal Activity of Benzofuran-5-ols, Bioorg. Med. Chem. Lett., 20, 6777 (2010); https://doi.org/10.1016/j.bmcl.2010.08.129
  12. B.F. Abdel-Wahab, H.A. Abdel-Aziz and E.M. Ahmed, Synthesis and Antimicrobial Evaluation of 1-(Benzofuran-2-yl)-4-nitro-3-aryl-butan-1-ones and 3-(Benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles, Eur. J. Med. Chem., 44, 2632 (2009); https://doi.org/10.1016/j.ejmech.2008.09.029
  13. F. Pan and T.C. Wang, Studies of Benzofurans as Potential Anti-microbial Agents I. Synthesis of Coumarilic Acid and its Derivatives, J. Chin. Chem. Soc. (Taipei), 8, 220 (1961); https://doi.org/10.1002/jccs.196100023
  14. F. Pan and T.C. Wang, Studies of Benzofurans as Potential Anti-microbial Agents. II. Synthesis of ß-(2-Benzofuryl)-Acrylic Acid and its Derivatives, J. Chin. Chem. Soc. (Taipei), 8, 374 (1961); https://doi.org/10.1002/jccs.196100038
  15. K. Manna and Y.K. Agrawal, Design, Synthesis, and Antitubercular Evaluation of Novel Series of 3-Benzofuran-5-aryl-1-pyrazolyl-pyridylmethanone and 3-Benzofuran-5-aryl-1-pyrazolylcarbonyl-4-oxo-naphthyridin Analogs, Eur. J. Med. Chem., 45, 3831 (2010); https://doi.org/10.1016/j.ejmech.2010.05.035
  16. M. Brændvang, V. Bakken and L.-L. Gundersen, Synthesis, Structure and Antimycobacterial Activity of 6-[1(3H)-Isobenzofuranylidenemethyl]-purines and Analogs, Bioorg. Med. Chem. Lett., 17, 6512 (2009); https://doi.org/10.1016/j.bmc.2009.08.012
  17. S.M. Bakunova, S.A. Bakunov, T. Wenzler, T. Barszcz, K.A. Werbovetz, R. Brun, J.E. Hall and R.R. Tidwell, Synthesis and in vitro Antiprotozoal Activity of Bisbenzofuran Cations, J. Med. Chem., 50, 5807 (2007); https://doi.org/10.1021/jm0708634
  18. F.A. Ragab, N.M. Eid, G.S. Hassan and Y.M. Nissan, Synthesis and Anti-inflammatory Activity of Some Benzofuran and Benzopyran-4-one Derivatives, Chem. Pharm. Bull. (Tokyo), 60, 110 (2012); https://doi.org/10.1248/cpb.60.110
  19. K.M. Dawood, H. Abdel-Gawad, E.A. Rageb, M. Ellithey and H.A. Mohamed, Synthesis, Anticonvulsant and Anti-inflammatory Evaluation of Some New Benzotriazole and Benzofuran-based Heterocycles, Bioorg. Med. Chem., 14, 3672 (2006); https://doi.org/10.1016/j.bmc.2006.01.033
  20. O.M. Abdelhafez, K.M. Amin, H.I. Ali, M.M. Abdalla and E.Y. Ahmed, Design, Synthesis and Anticancer Activity of Benzofuran Derivatives Targeting VEGFR-2 Tyrosine Kinase, RSC Adv., 4, 11569 (2014); https://doi.org/10.1039/c4ra00943f
  21. S.M. Rida, S.A. El-Hawash, H.T. Fahmy, A.A. Hazza and M.M. El-Meligy, Synthesis and in vitro Evaluation of Some Novel Benzofuran Derivatives as Potential Anti-HIV-1, Anticancer and Antimicrobial Agents, Arch. Pharm. Res., 29, 16 (2006); https://doi.org/10.1007/BF02977463
  22. S. Radl, P. Hezky, P. Konvicka and I. Krejci, Synthesis and Analgesic Activity of Some Substituted 1-Benzofurans and 1-Benzothiophenes, Coll. Czech. Chem. Commun., 65, 1093 (2000); https://doi.org/10.1135/cccc20001093
  23. S. P. Gibson and C. Laurate, Benzofuran Antiparasitic Agents, WO/2008/102232 (2008).
  24. K.V. Sashidhara, R.K. Modukuri, R. Sonkar, K.B. Rao and G. Bhatia, Hybrid Benzofuran-Bisindole Derivatives: New Prototypes with Promising Anti-Hyperlipidemic Activities, Eur. J. Med. Chem., 68, 38 (2013); https://doi.org/10.1016/j.ejmech.2013.07.009
  25. S.S. Rindhe, M.A. Rode and B.K. Karale, New Benzofuran Derivatives as an Antioxidant Agent, Indian J. Pharm. Sci., 72, 231 (2010); https://doi.org/10.4103/0250-474X.65022
  26. K.A. Reddy, B.B. Lohray, V. Bhushan, A.C. Bajji, K.V. Reddy, P.R. Reddy, T.H. Krishna, I.N. Rao, H.K. Jajoo, N.V.S.M. Rao, R. Chakrabarti, T. Dileepkumar and R. Rajagopalan, J. Med. Chem., 42, 1927 (1999); https://doi.org/10.1021/jm980549x
  27. B.C. Ross, D. Middlemiss, D.I.C. Scopes, T.I.M. Jack, K.S. Cardwell, M.D. Dowle, J.G. Montana, M. Pass and D.B. Judd, Anti-hypertensive Benzofuran Derivatives Substituted by N-Imidazolyl-methyl Groups which are Condensed with Optionally Nitrogen Containing, Six-Membered Rings, EP0514197A1 (1992).
  28. S. Ravikumar, M. Gnanadesigan, A. Saravanan, N. Monisha, V. Brindha and S. Muthumari, Antagonistic Properties of Seagrass Associated Streptomyces sp. RAUACT-1: A Source for Anthraquinone Rich Compound, Asian Pac. J. Trop. Med., 5, 887 (2012); https://doi.org/10.1016/S1995-7645(12)60165-5
  29. M. Ono, M.P. Kung, C. Hou and H.F. Kung, Benzofuran Derivatives as Ab-Aggregate-Specific Imaging Agents for Alzheimer’s Disease, Nucl. Med. Biol., 29, 633 (2002); https://doi.org/10.1016/S0969-8051(02)00326-8
  30. M.B. Isman, P. Proksch and L. Witte, Metabolism and Excretion of Acetylchromenes by the Migratory Grasshopper, Arch. Insect Biochem. Physiol., 6, 109 (1987); https://doi.org/10.1002/arch.940060205
  31. J.T. Arnason, B.J.R. Philogene and P. Morand, Insecticides of Plant Origin; ACS Symposium Series 387, Washington DC, pp 44-58 (1989).
  32. Y. He, J. Xu, Z.H. Yu, A.M. Gunawan, L. Wu, L. Wang and Z.Y. Zhang, Discovery and Evaluation of Novel Inhibitors of Mycobacterium Protein Tyrosine Phosphatase B from the 6-Hydroxy-benzofuran-5-carboxylic Acid Scaffold, J. Med. Chem., 56, 832 (2013); https://doi.org/10.1021/jm301781p
  33. J.C. Sacchettini, A. Aggarwal and M.K. Parai, Substituted Benzofuran Derivatives as Novel Antimycobacterial Agents, Patent WO 2016172498 A1 (2016).
  34. J. Renuka, K.I. Reddy, K. Srihari, V.U. Jeankumar, M. Shravan, J.P. Sridevi, P. Yogeeswari, K.S. Babu and D. Sriram, Design, Synthesis, Biological Evaluation of Substituted Benzofurans as DNA GyraseB Inhibitors of Mycobacterium tuberculosis, Bioorg. Med. Chem., 22, 4924 (2014); https://doi.org/10.1016/j.bmc.2014.06.041
  35. B.R. Thorat, B. Nazirkar, V.B. Thorat, M. Mandewale, A. Nagarsekar and R.S. Yamgar, Synthesis, Molecular Docking and Anti-TB Activity of 1-Benzofuran-2-Carbohydrazide, J. Chem. Sci. Photon, 110, 279 (2016).
  36. B. Nazirkar, U. Patil, B. Thorat, M. Mandewale, H. Gaokar, A. Pandhare and R. Yamgar, Synthesis and Anti-tubercular Study of Some Transition Metal Complexes of Hydrazone Derivatives Derived from Benzofuran-2-carbohydrazide, Der Pharm. Chem., 9, 45 (2017).
  37. S. Santoshkumar, N.D. Satyanarayana, R. Anantacharya and P. Sameer, Synthesis, Antimicrobial, Antitubercular and Cheminformatic Studies of 2-(1-Benzofuran-2-yl)-N¢-[(3Z)-2-oxo-1,2-dihydro-3H-indol-3-ylidene]quinoline-4-carbohydrazide and its Derivatives, Int. J. Pharm. Pharm. Sci., 9, 260 (2017); https://doi.org/10.22159/ijpps.2017v9i5.17564
  38. K. Kumara, K.P. Harish, N. Shivalingegowda, H.C. Tandon, K.N. Mohana and N.K. Lokanath, Crystal Structure Studies, Hirshfeld Surface Analysis and DFT Calculations of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]Oxadiazol-2-yl]piperazine Derivatives, Chem. Data Collect., 11-12, 40 (2017); https://doi.org/10.1016/j.cdc.2017.07.007
  39. C.R.W. Guimaraes, D.L. Boger and W.L. Jorgensen, Elucidation of Fatty Acid Amide Hydrolase Inhibition by Potent a-Ketoheterocycle Derivatives from Monte Carlo Simulations, J. Am. Chem. Soc., 127, 17377 (2005); https://doi.org/10.1021/ja055438j
  40. N.C. Desai, N. Bhatt, H. Somani and A. Trivedi, Synthesis, Antimicrobial and Cytotoxic Activities of Some Novel Thiazole Clubbed 1,3,4-Oxadiazoles, Eur. J. Med. Chem., 67, 54 (2013); https://doi.org/10.1016/j.ejmech.2013.06.029
  41. K.P. Harish, K.N. Mohana, L. Mallesha and B.N. Prasanna Kumar, Synthesis of Novel 1-[5-(4-methoxy-phenyl)-[1,3,4]oxadiazol-2-yl]-piperazine Derivatives and Evaluation of their in vivo Anticonvulsant Activity, Eur. J. Med. Chem., 65, 276 (2013); https://doi.org/10.1016/j.ejmech.2013.04.054
  42. H. Rajak, B. Singh Thakur, A. Singh, K. Raghuvanshi, A.K. Sah, R. Veerasamy, P.C. Sharma, R. Singh Pawar and M.D. Kharya, Novel Limonene and Citral Based 2,5-Disubstituted-1,3,4-oxadiazoles: A Natural Product Coupled Approach to Semicarbazones for Antiepileptic Activity, Bioorg. Med. Chem. Lett., 23, 864 (2013); https://doi.org/10.1016/j.bmcl.2012.11.051
  43. D.R. Guda, S.J. Park, M.W. Lee, T.J. Kim and M.E. Lee, Syntheses and Anti-allergic Activity of 2-((bis(Trimethylsilyl)methylthio/methylsulfonyl)methyl)-5-aryl-1,3,4-oxadiazoles, Eur. J. Med. Chem., 62, 84 (2013); https://doi.org/10.1016/j.ejmech.2012.12.035
  44. J. Sun, H. Zhu, Z.M. Yang and H.L. Zhu, Synthesis, Molecular Modeling and Biological Evaluation of 2-Aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione Quinolone Derivatives as Novel Anticancer agent, Eur. J. Med. Chem., 60, 23 (2013); https://doi.org/10.1016/j.ejmech.2012.11.039
  45. M.J. Ahsan, J.G. Samy, C.B. Jain, K.R. Dutt, H. Khalilullah and M.S. Nomani, Discovery of Novel Antitubercular 1,5-Dimethyl-2-phenyl-4-([5-(arylamino)-1,3,4-oxadiazol-2-yl]methylamino)-1,2-dihydro-3H-pyrazol-3-one Analogues, Bioorg. Med. Chem. Lett., 22, 969 (2012); https://doi.org/10.1016/j.bmcl.2011.12.014
  46. F. Macaev, Z. Ribkovskaia, S. Pogrebnoi, V. Boldescu, G. Rusu, N. Shvets, A. Dimoglo, A. Geronikaki and R. Reynolds, The Structure–Antituberculosis Activity Relationships Study in a Series of 5-Aryl-2-thio-1,3,4-oxadiazole Derivatives, Bioorg. Med. Chem., 19, 6792 (2011); https://doi.org/10.1016/j.bmc.2011.09.038
  47. M. Mahesh, G. Bheemaraju, G. Manjunath and P. Venkata Ramana, Synthesis of New Oxadiazole, Pyrazole and Pyrazolin-5-one Bearing 2-((4-Methyl-2-oxo-2H-chromen-7-yl)oxy)acetohydrazide Analogs as Potential Antibacterial and Antifungal agents, Ann. Pharm. Fr., 74, 34 (2016); https://doi.org/10.1016/j.pharma.2015.07.002
  48. G. Manjunath, G. Bheemaraju, M. Mahesh and P. Venkata Ramana, Synthesis of New 5-((2-(Substituted phenoxymethyl)-1H-benzo[d]-imidazol-1-yl)methyl)-1,3,4-oxadiazole-2-thiol: A Novel Class of Potential Antibacterial and Antifungal Agents, Ann. Pharm. Fr., 73, 452 (2015); https://doi.org/10.1016/j.pharma.2015.06.003
  49. P.V.B. Reddy, V. Kamala Prasad, G. Manjunath and P. Venkata Ramana, Synthesis, Characterization and Evaluation of Antibacterial Activity of (E)-N¢-(Substituted benzylidene)-2-(2-fluorobenzyl)-5-ethyl-2H-1,2,3-triazole-4-carbohydrazides, Ann. Pharm. Fr., 74, 350 (2016); https://doi.org/10.1016/j.pharma.2016.05.002
  50. I.J. Manchester, D.D. Dussault, A.J. Rose, A. Boriack-Sjodin, M. Uria-Nickelsen, G. Ioan-nidis, S. Bist, P. Fleming and K.G. Hull, Discovery of a Novel Azaindole Class of Antibacterial Agents Targeting the ATPase Domains of DNA Gyrase and Topoisomerase IV, Bioorg. Med. Chem. Lett., 22, 5150 (2012); https://doi.org/10.1016/j.bmcl.2012.05.128
  51. V.U. Jeankumar, J. Renuka, P. Santosh, J.P. Sridevi, P. Suryadevara, V. Soni, P. Yogeeswari and D. Sriram, Thiazole-Aminopiperidine Hybrid Analogues: Design and Synthesis of Novel Mycobacterium tuberculosis GyrB inhibitors, Eur. J. Med. Chem., 70, 143 (2013); https://doi.org/10.1016/j.ejmech.2013.09.025
  52. S.K. Verma, R. Verma, S. Verma, Y. Vaishnav, S.P. Tiwari and K.P. Rakesh, Anti-Tuberculosis Activity and its Structure-Activity Relationship (SAR) Studies of Oxadiazole Derivatives: A Key Review, Eur. J. Med. Chem., 209, 112886 (2021); https://doi.org/10.1016/j.ejmech.2020.112886
  53. G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function, J. Comput. Chem., 19, 1639 (1998); https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:: AID-JCC10>3.0.CO;2-B
  54. S. Miyamoto and P.A. Kollman, Settle: An Analytical Version of the Shake and Rattle Algorithm for Rigid Water Models, J. Comput. Chem., 13, 952 (1992); https://doi.org/10.1002/jcc.540130805
  55. T.I. Oprea, A.M. Davis, S.J. Teague and P.D. Leeson, Is There a Difference between Leads and Drugs? A Historical Perspective, J. Chem. Inf. Comput. Sci., 41, 1308 (2001); https://doi.org/10.1021/ci010366a