Main Article Content

Abstract

A critical route for cancer metastases is pathological angiogenesis. The protein Kallikrein-12 (KLK-12) is a serine protease reported to be involved in a variety of biochemical processes that have a functional role in angiogenesis. The KLK-12 protein hydrolyzes the cysteine rich angiogenic inducer 61 (CYR61) protein and controls the bioavailability of angiogenesis-inducing growth factors. The work proposed involves the homology modeling of the KLK-12 protein, identify essential residues to be putatively linked to the natural substrate. Protein-protein docking is done to characterize Trp35, Gln36, Gly38, Trp82 and His107 residues of the active site, in addition to active site servers (active site prediction server and CASTp). Using Auto Dock Vina software, virtual screening studies were carried out to identify the substituted carboxamide scaffolds as a pharmacophore binding at the active site. Based on binding energy, ADME and visual inspection, an isochromene carboxamide moiety is identified as antiangiogenic and cancer antagonists.

Keywords

Kallikrein Angiogenesis Homology Virtual screening Pharmacophore.

Article Details

How to Cite
B, J., & Nambigari1, N. (2021). Identification of Novel Anticancer Agent by in silico Methods for Inhibition of KLK-12 Protein. Asian Journal of Organic & Medicinal Chemistry, 6(1), 13–23. https://doi.org/10.14233/ajomc.2021.AJOMC-P304

References

  1. D. Hanahan and R.A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
  2. L.A. Liotta and E.C. Kohn, The Microenvironment of the Tumour-Host Interface, Nature, 411, 375 (2001); https://doi.org/10.1038/35077241
  3. J.A. Aguirre-Ghiso, Models, Mechanisms and Clinical Evidence for Cancer Dormancy, Nat. Rev. Cancer, 7, 834 (2007); https://doi.org/10.1038/nrc2256
  4. Z. Ahmed and R. Bicknell, Angiogenic Signalling Pathways, Mol. Biol., 467, 3 (2009); https://doi.org/10.1007/978-1-59745-241-0_1
  5. P. Carmeliet, Angiogenesis in Life, Disease and Medicine, Nature, 438, 932 (2005); https://doi.org/10.1038/nature04478
  6. C.A. Borgoño, I.P. Michael and E.P. Diamandis, Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer, Mol. Cancer Res., 2, 257 (2004).
  7. E.P. Diamandis, G.M. Yousef, J. Clements, L.K. Ashworth, S. Yoshida, T. Egelrud, P.S. Nelson, S. Shiosaka, S. Little, H. Lilja, U.H. Stenman, H.G. Rittenhouse and H. Wain, New Nomenclature for the Human Tissue Kallikrein Gene Family, Clin. Chem., 46, 1855 (2000); https://doi.org/10.1093/clinchem/46.11.1855
  8. V.L. Koumandou and A. Scorilas, Evolution of the Plasma and Tissue Kallikreins, and their Alternative Splicing Isoforms, PLoS One, 8, 68074 (2013); https://doi.org/10.1371/journal.pone.0068074
  9. H. Lilja, A Kallikrein-like Serine Protease in Prostatic Fluid Cleaves the Predominant Seminal Vesicle Protein, J. Clin. Invest., 76, 1899 (1985); https://doi.org/10.1172/JCI112185
  10. M.M. Webber, A. Waghray and D. Bello, Prostate-Specific Antigen, A Serine Protease, Facilitates Human Prostate Cancer Cell Invasion, Clin. Cancer Res., 1, 1089 (1995).
  11. G.M. Yousef, A. Magklara and E.P. Diamandis, KLK12 Is a Novel Serine Protease and a New Member of the Human Kallikrein Gene Family—Differential Expression in Breast Cancer, Genomics, 69, 331 (2000); https://doi.org/10.1006/geno.2000.6346
  12. A. Guillon-Munos, K. Oikonomopoulou, N. Michel, C.R. Smith, A. Petit-Courty, S. Canepa, P. Reverdiau, N. Heuzè-Vourc’h, E.P. Diamandis and Y. Courty, Kallikrein-Related Peptidase 12 Hydrolyzes Matricellular Proteins of the CCN Family and Modifies Interactions of CCN1 and CCN5 with Growth Factors, J. Biol. Chem., 286, 25505 (2011); https://doi.org/10.1074/jbc.M110.213231
  13. J.A. Clements, N.M. Willemsen, S.A. Myers and Y. Dong, The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers, Crit. Rev. Clin. Lab. Sci., 41, 265 (2004); https://doi.org/10.1080/10408360490471931
  14. X.S. Puente, L.M. Sánchez, C.M. Overall and C. López-Otín, Human and Mouse Proteases: A Comparative Genomic Approach, Nat. Rev. Genet., 4, 544 (2003); https://doi.org/10.1038/nrg1111
  15. J.C. Davis, L. Furstenthal, A.A. Desai, T. Norris, S. Sutaria, E. Fleming and P. Ma, The Microeconomics of Personalized Medicine: Today's Challenge and Tomorrow's Promise, Nat. Rev. Drug Discov., 8, 279 (2009); https://doi.org/10.1038/nrd2825
  16. S. Jakka and M. Rossbach, An Economic Perspective on Personalized Medicine, HUGO J., 7, 1 (2013); https://doi.org/10.1186/1877-6566-7-1
  17. D.E. Pritchard, F. Moeckel, M.S. Villa, L.T. Housman, C.A. McCarty and H.L. McLeod, Strategies for Integrating Personalized Medicine into Healthcare Practice, Per. Med., 14, 141 (2017); https://doi.org/10.2217/pme-2016-0064
  18. E. Yuriev, J. Holien and P.A. Ramsland, Improvements, Trends, and New Ideas in Molecular Docking: 2012–2013 In Review, J. Mol. Recognit., 28, 581 (2015); https://doi.org/10.1002/jmr.2471
  19. V. Malkhed, K.K. Mustyala, S.R. Potlapally and U. Vuruputuri, Identi-fication of Novel Leads Applying in silico Studies for Mycobacterium Multidrug Resistant (Mmr) Protein, J. Biomol. Struct. Dyn., 32, 1889 (2014); https://doi.org/10.1080/07391102.2013.842185
  20. R. Dumpati, V. Ramatenki, R. Vadija, S. Vellanki and U. Vuruputuri, Structural Insights into Suppressor of Cytokine Signaling 1 Protein- Identification of New Leads for Type 2 Diabetes mellitus, J. Mol. Recognit., 31, e2706 (2018); https://doi.org/10.1002/jmr.2706
  21. C.M. Labbé, J. Rey, D. Lagorce, M. Vavruša, J. Becot, O. Sperandio, B.O. Villoutreix, P. Tufféry and M.A. Miteva, MTiOpenScreen: A Web Server for Structure-based Virtual Screening, Nucleic Acids Res., 43, W448 (2015); https://doi.org/10.1093/nar/gkv306
  22. K.K. Mustyala, V. Malkhed, V.R.R. Chittireddy and U. Vuruputuri, Identification of Small Molecular Inhibitors for Efflux Protein: DrrA of Mycobacterium tuberculosis, Cell. Mol. Bioeng., 9, 190 (2016); https://doi.org/10.1007/s12195-015-0427-2
  23. B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout and M. Schneider, The SWISS-PROT Protein Knowledge Base and its Supplement TrEMBL in 2003, Nucleic Acids Res., 31, 365 (2003); https://doi.org/10.1093/nar/gkg095
  24. The UniProt Consortium, UniProt: A Hub for Protein Information, Nucleic Acids Res., 43, D204 (2015); https://doi.org/10.1093/nar/gku989
  25. P. Artimo, M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi, E. de Castro, S. Duvaud, V. Flegel, A. Fortier, E. Gasteiger, A. Grosdidier, C. Hernandez, V. Ioannidis, D. Kuznetsov, R. Liechti, S. Moretti, K. Mostaguir, N. Redaschi, G. Rossier, I. Xenarios and H. Stockinger, ExPASy: SIB Bioinformatics Resource Portal, Nucleic Acids Res., 40, W597 (2012); https://doi.org/10.1093/nar/gks400
  26. E. Gasteiger, ExPASy: the Proteomics Server for In-Depth Protein Knowledge and Analysis, Nucleic Acids Res., 31, 3784 (2003); https://doi.org/10.1093/nar/gkg563
  27. A. Pertsemlidis and J.W. Fondon III, Having a BLAST with Bioinformatics (and Avoiding BLASTphemy), Genome Biol., 2, 1 (2001); https://doi.org/10.1186/gb-2001-2-10-reviews2002
  28. J.A. Cuff and G.J. Barton, Evaluation and Improvement of Multiple Sequence Methods for Protein Secondary Structure Prediction, Proteins, 34, 508 (1999); https://doi.org/10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
  29. J. Soding, A. Biegert and A.N. Lupas, The HHpred Interactive Server for Protein Homology Detection and Structure Prediction, Nucleic Acids Res., 33, W244 (2005); https://doi.org/10.1093/nar/gki408
  30. K. Bhargavi, P.K. Chaitanya, D. Ramasree, M. Vasavi, D.K. Murthy and V. Uma, Homology Modeling and Docking Studies of Human Bcl-2L10 Protein, J. Biomol. Struct. Dyn., 28, 379 (2010); https://doi.org/10.1080/07391102.2010.10507367
  31. V. Ahola, T. Aittokallio, M. Vihinen and E. Uusipaikka, A Statistical Score for Assessing the Quality of Multiple Sequence Alignments, A Statistical Score for Assessing the Quality of Multiple Sequence Alignments, BMC Bioinformatics, 7, 484 (2006); https://doi.org/10.1186/1471-2105-7-484
  32. A. Šali, L. Potterton, F. Yuan, H. van Vlijmen and M. Karplus, Evaluation of Comparative Protein Modeling by MODELLER, Proteins, 23, 318 (1995); https://doi.org/10.1002/prot.340230306
  33. N. Guex and M.C. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling, Electrophoresis, 18, 2714 (1997); https://doi.org/10.1002/elps.1150181505
  34. R.A. Laskowski, M.W. Macarthur, D.S. Moss and J.M. Thornton, PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
  35. M. Wiederstein and M.J. Sippl, ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-dimensional Structures of Proteins, Nucleic Acids Res., 35, W407 (2007); https://doi.org/10.1093/nar/gkm290
  36. J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, CASTp: Computed Atlas of Surface Topography of Proteins with Structural and Topographical Mapping of Functionally Annotated Residues, Nucleic Acids Res., 34, W116 (2006); https://doi.org/10.1093/nar/gkl282
  37. D. Duhovny, R. Nussinov and H.J. Wolfson, Efficient Unbound Docking of Rigid Molecules, In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (2002).
  38. D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, PatchDock and SymmDock: Servers for Rigid and Symmetric Docking, Nucleic Acids Res., 33, W363 (2005); https://doi.org/10.1093/nar/gki481
  39. D.S. Goodsell and A.J. Olson, Automated Docking of Substrates to Proteins by Simulated Annealing, Proteins Struct. Funct. Bioinform., 8, 195 (1990); https://doi.org/10.1002/prot.340080302
  40. G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
  41. M.M. Jaghoori, B. Bleijlevens and S.D. Olabarriaga, 1001 Ways to Run AutoDock Vina for Virtual Screening, J. Comput. Aided Mol. Des., 30, 237 (2016); https://doi.org/10.1007/s10822-016-9900-9
  42. M.A. Rauf, S. Zubair and A. Azhar, Ligand Docking and Binding Site Analysis with Pymol and Autodock/Vina, Int. J. Basic Appl. Sci., 4, 168 (2015); https://doi.org/10.14419/ijbas.v4i2.4123
  43. Y. Wang, T. Suzek, J. Zhang, J. Wang, S. He, T. Cheng, B.A. Shoemaker, A. Gindulyte and S.H. Bryant, PubChem BioAssay: 2014 Update, Nucleic Acids Res., 42, D1075 (2014); https://doi.org/10.1093/nar/gkt978
  44. A. Daina, O. Michielin and V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
  45. A. Daina and V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
  46. M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis and T.L. Madden, NCBI BLAST: A Better Web Interface, Nucleic Acids Res., 36, 5 (2008); https://doi.org/10.1093/nar/gkn201
  47. S. Karlin and S.F. Altschul, Methods for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes, Proc. Natl. Acad. Sci. USA, 87, 2264 (1990); https://doi.org/10.1073/pnas.87.6.2264
  48. A. Drozdetskiy, C. Cole, J. Procter and G.J. Barton, JPred4: A Protein Secondary Structure Prediction Server, Nucleic Acids Res., 43, 389 (2015); https://doi.org/10.1093/nar/gkv332
  49. J. Söding, Protein Homology Detection by HMM-HMM Comparison, Bioinformatics, 21, 951 (2005); https://doi.org/10.1093/bioinformatics/bti125
  50. W. Kaplan and T.G. Littlejohn, Swiss-PDB Viewer (Deep View), Brief. Bioinform., 2, 195 (2001); https://doi.org/10.1093/bib/2.2.195
  51. M. Feig, Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD, J. Chem. Inf. Model., 56, 1304 (2016); https://doi.org/10.1021/acs.jcim.6b00222
  52. D. Schneidman-Duhovny, Y. Inbar, V. Polak, M. Shatsky, I. Halperin, H. Benyamini, A. Barzilai, O. Dror, N. Haspel, R. Nussinov and H.J. Wolfson, Taking Geometry to its Edge: Fast Unbound Rigid (And Hinge-bent) Docking, Proteins, 52, 107 (2003); https://doi.org/10.1002/prot.10397
  53. R. Vadija, K.K. Mustyala, N. Nambigari, R. Dulapalli, R.K. Dumpati, V. Ramatenki, S.P. Vellanki and U. Vuruputuri, Homology Modeling and Virtual Screening Studies of FGF-7 Protein-A Structure-based Approach to Design New Molecules Against Tumor Angiogenesis, J. Chem. Biol., 9, 69 (2016); https://doi.org/10.1007/s12154-016-0152-x
  54. S.P. Vellanki, R. Dulapalli, B. Kondagari, N. Nambigari, R. Vadija, V. Ramatenki, R.K. Dumpati and U. Vuruputuri, Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 Proteins-Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An In silico study, Interdiscip. Sci. Comput. Life Sci., 10, 346 (2018); https://doi.org/10.1007/s12539-017-0212-0
  55. N.M.F.S.A. Cerqueira, D. Gesto, E.F. Oliveira, D. Santos-Martins, N.F. Brás, S.F. Sousa, P.A. Fernandes and M.J. Ramos, Receptor-based Virtual Screening Protocol for Drug Discovery, Arch. Biochem. Biophys., 582, 56 (2015); https://doi.org/10.1016/j.abb.2015.05.011
  56. M.W. Chang, C. Ayeni, S. Breuer and B.E. Torbett, Virtual Screening for HIV Protease Inhibitors: A Comparison of AutoDock 4 and Vina, PLoS One, 5, e11955 (2010); https://doi.org/10.1371/journal.pone.0011955
  57. S. Tian, J. Wang, Y. Li, D. Li, L. Xu and T. Hou, The Application of in silico Drug-Likeness Predictions in Pharmaceutical Research, Adv. Drug Deliv. Rev., 86, 2 (2015); https://doi.org/10.1016/j.addr.2015.01.009
  58. A. Breier, L. Gibalova, M. Seres, M. Barancik and Z. Sulova, New Insight into P-Glycoprotein as a Drug Target, Anticancer. Agents Med. Chem., 13, 159 (2012); https://doi.org/10.2174/1871520611307010159
  59. S.J. Park, H. Baars, S. Mersmann, H. Buschmann, J.M. Baron, P.M. Amann, K. Czaja, H. Hollert, K. Bluhm, R. Redelstein and C. Bolm, N-Cyano Sulfoximines: COX Inhibition, Anticancer Activity, Cellular Toxicity, and Mutagenicity, ChemMedChem, 8, 217 (2013); https://doi.org/10.1002/cmdc.201200403
  60. C. Betsholtz, Double Function at the Blood-Brain Barrier, Nature, 509, 432 (2014); https://doi.org/10.1038/nature13339