Main Article Content
Abstract
A critical route for cancer metastases is pathological angiogenesis. The protein Kallikrein-12 (KLK-12) is a serine protease reported to be involved in a variety of biochemical processes that have a functional role in angiogenesis. The KLK-12 protein hydrolyzes the cysteine rich angiogenic inducer 61 (CYR61) protein and controls the bioavailability of angiogenesis-inducing growth factors. The work proposed involves the homology modeling of the KLK-12 protein, identify essential residues to be putatively linked to the natural substrate. Protein-protein docking is done to characterize Trp35, Gln36, Gly38, Trp82 and His107 residues of the active site, in addition to active site servers (active site prediction server and CASTp). Using Auto Dock Vina software, virtual screening studies were carried out to identify the substituted carboxamide scaffolds as a pharmacophore binding at the active site. Based on binding energy, ADME and visual inspection, an isochromene carboxamide moiety is identified as antiangiogenic and cancer antagonists.
Keywords
Article Details
Copyright (c) 2021 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- D. Hanahan and R.A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
- L.A. Liotta and E.C. Kohn, The Microenvironment of the Tumour-Host Interface, Nature, 411, 375 (2001); https://doi.org/10.1038/35077241
- J.A. Aguirre-Ghiso, Models, Mechanisms and Clinical Evidence for Cancer Dormancy, Nat. Rev. Cancer, 7, 834 (2007); https://doi.org/10.1038/nrc2256
- Z. Ahmed and R. Bicknell, Angiogenic Signalling Pathways, Mol. Biol., 467, 3 (2009); https://doi.org/10.1007/978-1-59745-241-0_1
- P. Carmeliet, Angiogenesis in Life, Disease and Medicine, Nature, 438, 932 (2005); https://doi.org/10.1038/nature04478
- C.A. Borgoño, I.P. Michael and E.P. Diamandis, Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer, Mol. Cancer Res., 2, 257 (2004).
- E.P. Diamandis, G.M. Yousef, J. Clements, L.K. Ashworth, S. Yoshida, T. Egelrud, P.S. Nelson, S. Shiosaka, S. Little, H. Lilja, U.H. Stenman, H.G. Rittenhouse and H. Wain, New Nomenclature for the Human Tissue Kallikrein Gene Family, Clin. Chem., 46, 1855 (2000); https://doi.org/10.1093/clinchem/46.11.1855
- V.L. Koumandou and A. Scorilas, Evolution of the Plasma and Tissue Kallikreins, and their Alternative Splicing Isoforms, PLoS One, 8, 68074 (2013); https://doi.org/10.1371/journal.pone.0068074
- H. Lilja, A Kallikrein-like Serine Protease in Prostatic Fluid Cleaves the Predominant Seminal Vesicle Protein, J. Clin. Invest., 76, 1899 (1985); https://doi.org/10.1172/JCI112185
- M.M. Webber, A. Waghray and D. Bello, Prostate-Specific Antigen, A Serine Protease, Facilitates Human Prostate Cancer Cell Invasion, Clin. Cancer Res., 1, 1089 (1995).
- G.M. Yousef, A. Magklara and E.P. Diamandis, KLK12 Is a Novel Serine Protease and a New Member of the Human Kallikrein Gene Family—Differential Expression in Breast Cancer, Genomics, 69, 331 (2000); https://doi.org/10.1006/geno.2000.6346
- A. Guillon-Munos, K. Oikonomopoulou, N. Michel, C.R. Smith, A. Petit-Courty, S. Canepa, P. Reverdiau, N. Heuzè-Vourc’h, E.P. Diamandis and Y. Courty, Kallikrein-Related Peptidase 12 Hydrolyzes Matricellular Proteins of the CCN Family and Modifies Interactions of CCN1 and CCN5 with Growth Factors, J. Biol. Chem., 286, 25505 (2011); https://doi.org/10.1074/jbc.M110.213231
- J.A. Clements, N.M. Willemsen, S.A. Myers and Y. Dong, The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers, Crit. Rev. Clin. Lab. Sci., 41, 265 (2004); https://doi.org/10.1080/10408360490471931
- X.S. Puente, L.M. Sánchez, C.M. Overall and C. López-Otín, Human and Mouse Proteases: A Comparative Genomic Approach, Nat. Rev. Genet., 4, 544 (2003); https://doi.org/10.1038/nrg1111
- J.C. Davis, L. Furstenthal, A.A. Desai, T. Norris, S. Sutaria, E. Fleming and P. Ma, The Microeconomics of Personalized Medicine: Today's Challenge and Tomorrow's Promise, Nat. Rev. Drug Discov., 8, 279 (2009); https://doi.org/10.1038/nrd2825
- S. Jakka and M. Rossbach, An Economic Perspective on Personalized Medicine, HUGO J., 7, 1 (2013); https://doi.org/10.1186/1877-6566-7-1
- D.E. Pritchard, F. Moeckel, M.S. Villa, L.T. Housman, C.A. McCarty and H.L. McLeod, Strategies for Integrating Personalized Medicine into Healthcare Practice, Per. Med., 14, 141 (2017); https://doi.org/10.2217/pme-2016-0064
- E. Yuriev, J. Holien and P.A. Ramsland, Improvements, Trends, and New Ideas in Molecular Docking: 2012–2013 In Review, J. Mol. Recognit., 28, 581 (2015); https://doi.org/10.1002/jmr.2471
- V. Malkhed, K.K. Mustyala, S.R. Potlapally and U. Vuruputuri, Identi-fication of Novel Leads Applying in silico Studies for Mycobacterium Multidrug Resistant (Mmr) Protein, J. Biomol. Struct. Dyn., 32, 1889 (2014); https://doi.org/10.1080/07391102.2013.842185
- R. Dumpati, V. Ramatenki, R. Vadija, S. Vellanki and U. Vuruputuri, Structural Insights into Suppressor of Cytokine Signaling 1 Protein- Identification of New Leads for Type 2 Diabetes mellitus, J. Mol. Recognit., 31, e2706 (2018); https://doi.org/10.1002/jmr.2706
- C.M. Labbé, J. Rey, D. Lagorce, M. Vavruša, J. Becot, O. Sperandio, B.O. Villoutreix, P. Tufféry and M.A. Miteva, MTiOpenScreen: A Web Server for Structure-based Virtual Screening, Nucleic Acids Res., 43, W448 (2015); https://doi.org/10.1093/nar/gkv306
- K.K. Mustyala, V. Malkhed, V.R.R. Chittireddy and U. Vuruputuri, Identification of Small Molecular Inhibitors for Efflux Protein: DrrA of Mycobacterium tuberculosis, Cell. Mol. Bioeng., 9, 190 (2016); https://doi.org/10.1007/s12195-015-0427-2
- B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout and M. Schneider, The SWISS-PROT Protein Knowledge Base and its Supplement TrEMBL in 2003, Nucleic Acids Res., 31, 365 (2003); https://doi.org/10.1093/nar/gkg095
- The UniProt Consortium, UniProt: A Hub for Protein Information, Nucleic Acids Res., 43, D204 (2015); https://doi.org/10.1093/nar/gku989
- P. Artimo, M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi, E. de Castro, S. Duvaud, V. Flegel, A. Fortier, E. Gasteiger, A. Grosdidier, C. Hernandez, V. Ioannidis, D. Kuznetsov, R. Liechti, S. Moretti, K. Mostaguir, N. Redaschi, G. Rossier, I. Xenarios and H. Stockinger, ExPASy: SIB Bioinformatics Resource Portal, Nucleic Acids Res., 40, W597 (2012); https://doi.org/10.1093/nar/gks400
- E. Gasteiger, ExPASy: the Proteomics Server for In-Depth Protein Knowledge and Analysis, Nucleic Acids Res., 31, 3784 (2003); https://doi.org/10.1093/nar/gkg563
- A. Pertsemlidis and J.W. Fondon III, Having a BLAST with Bioinformatics (and Avoiding BLASTphemy), Genome Biol., 2, 1 (2001); https://doi.org/10.1186/gb-2001-2-10-reviews2002
- J.A. Cuff and G.J. Barton, Evaluation and Improvement of Multiple Sequence Methods for Protein Secondary Structure Prediction, Proteins, 34, 508 (1999); https://doi.org/10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
- J. Soding, A. Biegert and A.N. Lupas, The HHpred Interactive Server for Protein Homology Detection and Structure Prediction, Nucleic Acids Res., 33, W244 (2005); https://doi.org/10.1093/nar/gki408
- K. Bhargavi, P.K. Chaitanya, D. Ramasree, M. Vasavi, D.K. Murthy and V. Uma, Homology Modeling and Docking Studies of Human Bcl-2L10 Protein, J. Biomol. Struct. Dyn., 28, 379 (2010); https://doi.org/10.1080/07391102.2010.10507367
- V. Ahola, T. Aittokallio, M. Vihinen and E. Uusipaikka, A Statistical Score for Assessing the Quality of Multiple Sequence Alignments, A Statistical Score for Assessing the Quality of Multiple Sequence Alignments, BMC Bioinformatics, 7, 484 (2006); https://doi.org/10.1186/1471-2105-7-484
- A. Šali, L. Potterton, F. Yuan, H. van Vlijmen and M. Karplus, Evaluation of Comparative Protein Modeling by MODELLER, Proteins, 23, 318 (1995); https://doi.org/10.1002/prot.340230306
- N. Guex and M.C. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling, Electrophoresis, 18, 2714 (1997); https://doi.org/10.1002/elps.1150181505
- R.A. Laskowski, M.W. Macarthur, D.S. Moss and J.M. Thornton, PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
- M. Wiederstein and M.J. Sippl, ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-dimensional Structures of Proteins, Nucleic Acids Res., 35, W407 (2007); https://doi.org/10.1093/nar/gkm290
- J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, CASTp: Computed Atlas of Surface Topography of Proteins with Structural and Topographical Mapping of Functionally Annotated Residues, Nucleic Acids Res., 34, W116 (2006); https://doi.org/10.1093/nar/gkl282
- D. Duhovny, R. Nussinov and H.J. Wolfson, Efficient Unbound Docking of Rigid Molecules, In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (2002).
- D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, PatchDock and SymmDock: Servers for Rigid and Symmetric Docking, Nucleic Acids Res., 33, W363 (2005); https://doi.org/10.1093/nar/gki481
- D.S. Goodsell and A.J. Olson, Automated Docking of Substrates to Proteins by Simulated Annealing, Proteins Struct. Funct. Bioinform., 8, 195 (1990); https://doi.org/10.1002/prot.340080302
- G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
- M.M. Jaghoori, B. Bleijlevens and S.D. Olabarriaga, 1001 Ways to Run AutoDock Vina for Virtual Screening, J. Comput. Aided Mol. Des., 30, 237 (2016); https://doi.org/10.1007/s10822-016-9900-9
- M.A. Rauf, S. Zubair and A. Azhar, Ligand Docking and Binding Site Analysis with Pymol and Autodock/Vina, Int. J. Basic Appl. Sci., 4, 168 (2015); https://doi.org/10.14419/ijbas.v4i2.4123
- Y. Wang, T. Suzek, J. Zhang, J. Wang, S. He, T. Cheng, B.A. Shoemaker, A. Gindulyte and S.H. Bryant, PubChem BioAssay: 2014 Update, Nucleic Acids Res., 42, D1075 (2014); https://doi.org/10.1093/nar/gkt978
- A. Daina, O. Michielin and V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
- A. Daina and V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
- M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis and T.L. Madden, NCBI BLAST: A Better Web Interface, Nucleic Acids Res., 36, 5 (2008); https://doi.org/10.1093/nar/gkn201
- S. Karlin and S.F. Altschul, Methods for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes, Proc. Natl. Acad. Sci. USA, 87, 2264 (1990); https://doi.org/10.1073/pnas.87.6.2264
- A. Drozdetskiy, C. Cole, J. Procter and G.J. Barton, JPred4: A Protein Secondary Structure Prediction Server, Nucleic Acids Res., 43, 389 (2015); https://doi.org/10.1093/nar/gkv332
- J. Söding, Protein Homology Detection by HMM-HMM Comparison, Bioinformatics, 21, 951 (2005); https://doi.org/10.1093/bioinformatics/bti125
- W. Kaplan and T.G. Littlejohn, Swiss-PDB Viewer (Deep View), Brief. Bioinform., 2, 195 (2001); https://doi.org/10.1093/bib/2.2.195
- M. Feig, Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD, J. Chem. Inf. Model., 56, 1304 (2016); https://doi.org/10.1021/acs.jcim.6b00222
- D. Schneidman-Duhovny, Y. Inbar, V. Polak, M. Shatsky, I. Halperin, H. Benyamini, A. Barzilai, O. Dror, N. Haspel, R. Nussinov and H.J. Wolfson, Taking Geometry to its Edge: Fast Unbound Rigid (And Hinge-bent) Docking, Proteins, 52, 107 (2003); https://doi.org/10.1002/prot.10397
- R. Vadija, K.K. Mustyala, N. Nambigari, R. Dulapalli, R.K. Dumpati, V. Ramatenki, S.P. Vellanki and U. Vuruputuri, Homology Modeling and Virtual Screening Studies of FGF-7 Protein-A Structure-based Approach to Design New Molecules Against Tumor Angiogenesis, J. Chem. Biol., 9, 69 (2016); https://doi.org/10.1007/s12154-016-0152-x
- S.P. Vellanki, R. Dulapalli, B. Kondagari, N. Nambigari, R. Vadija, V. Ramatenki, R.K. Dumpati and U. Vuruputuri, Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 Proteins-Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An In silico study, Interdiscip. Sci. Comput. Life Sci., 10, 346 (2018); https://doi.org/10.1007/s12539-017-0212-0
- N.M.F.S.A. Cerqueira, D. Gesto, E.F. Oliveira, D. Santos-Martins, N.F. Brás, S.F. Sousa, P.A. Fernandes and M.J. Ramos, Receptor-based Virtual Screening Protocol for Drug Discovery, Arch. Biochem. Biophys., 582, 56 (2015); https://doi.org/10.1016/j.abb.2015.05.011
- M.W. Chang, C. Ayeni, S. Breuer and B.E. Torbett, Virtual Screening for HIV Protease Inhibitors: A Comparison of AutoDock 4 and Vina, PLoS One, 5, e11955 (2010); https://doi.org/10.1371/journal.pone.0011955
- S. Tian, J. Wang, Y. Li, D. Li, L. Xu and T. Hou, The Application of in silico Drug-Likeness Predictions in Pharmaceutical Research, Adv. Drug Deliv. Rev., 86, 2 (2015); https://doi.org/10.1016/j.addr.2015.01.009
- A. Breier, L. Gibalova, M. Seres, M. Barancik and Z. Sulova, New Insight into P-Glycoprotein as a Drug Target, Anticancer. Agents Med. Chem., 13, 159 (2012); https://doi.org/10.2174/1871520611307010159
- S.J. Park, H. Baars, S. Mersmann, H. Buschmann, J.M. Baron, P.M. Amann, K. Czaja, H. Hollert, K. Bluhm, R. Redelstein and C. Bolm, N-Cyano Sulfoximines: COX Inhibition, Anticancer Activity, Cellular Toxicity, and Mutagenicity, ChemMedChem, 8, 217 (2013); https://doi.org/10.1002/cmdc.201200403
- C. Betsholtz, Double Function at the Blood-Brain Barrier, Nature, 509, 432 (2014); https://doi.org/10.1038/nature13339
References
D. Hanahan and R.A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, 144, 646 (2011); https://doi.org/10.1016/j.cell.2011.02.013
L.A. Liotta and E.C. Kohn, The Microenvironment of the Tumour-Host Interface, Nature, 411, 375 (2001); https://doi.org/10.1038/35077241
J.A. Aguirre-Ghiso, Models, Mechanisms and Clinical Evidence for Cancer Dormancy, Nat. Rev. Cancer, 7, 834 (2007); https://doi.org/10.1038/nrc2256
Z. Ahmed and R. Bicknell, Angiogenic Signalling Pathways, Mol. Biol., 467, 3 (2009); https://doi.org/10.1007/978-1-59745-241-0_1
P. Carmeliet, Angiogenesis in Life, Disease and Medicine, Nature, 438, 932 (2005); https://doi.org/10.1038/nature04478
C.A. Borgoño, I.P. Michael and E.P. Diamandis, Human Tissue Kallikreins: Physiologic Roles and Applications in Cancer, Mol. Cancer Res., 2, 257 (2004).
E.P. Diamandis, G.M. Yousef, J. Clements, L.K. Ashworth, S. Yoshida, T. Egelrud, P.S. Nelson, S. Shiosaka, S. Little, H. Lilja, U.H. Stenman, H.G. Rittenhouse and H. Wain, New Nomenclature for the Human Tissue Kallikrein Gene Family, Clin. Chem., 46, 1855 (2000); https://doi.org/10.1093/clinchem/46.11.1855
V.L. Koumandou and A. Scorilas, Evolution of the Plasma and Tissue Kallikreins, and their Alternative Splicing Isoforms, PLoS One, 8, 68074 (2013); https://doi.org/10.1371/journal.pone.0068074
H. Lilja, A Kallikrein-like Serine Protease in Prostatic Fluid Cleaves the Predominant Seminal Vesicle Protein, J. Clin. Invest., 76, 1899 (1985); https://doi.org/10.1172/JCI112185
M.M. Webber, A. Waghray and D. Bello, Prostate-Specific Antigen, A Serine Protease, Facilitates Human Prostate Cancer Cell Invasion, Clin. Cancer Res., 1, 1089 (1995).
G.M. Yousef, A. Magklara and E.P. Diamandis, KLK12 Is a Novel Serine Protease and a New Member of the Human Kallikrein Gene Family—Differential Expression in Breast Cancer, Genomics, 69, 331 (2000); https://doi.org/10.1006/geno.2000.6346
A. Guillon-Munos, K. Oikonomopoulou, N. Michel, C.R. Smith, A. Petit-Courty, S. Canepa, P. Reverdiau, N. Heuzè-Vourc’h, E.P. Diamandis and Y. Courty, Kallikrein-Related Peptidase 12 Hydrolyzes Matricellular Proteins of the CCN Family and Modifies Interactions of CCN1 and CCN5 with Growth Factors, J. Biol. Chem., 286, 25505 (2011); https://doi.org/10.1074/jbc.M110.213231
J.A. Clements, N.M. Willemsen, S.A. Myers and Y. Dong, The Tissue Kallikrein Family of Serine Proteases: Functional Roles in Human Disease and Potential as Clinical Biomarkers, Crit. Rev. Clin. Lab. Sci., 41, 265 (2004); https://doi.org/10.1080/10408360490471931
X.S. Puente, L.M. Sánchez, C.M. Overall and C. López-Otín, Human and Mouse Proteases: A Comparative Genomic Approach, Nat. Rev. Genet., 4, 544 (2003); https://doi.org/10.1038/nrg1111
J.C. Davis, L. Furstenthal, A.A. Desai, T. Norris, S. Sutaria, E. Fleming and P. Ma, The Microeconomics of Personalized Medicine: Today's Challenge and Tomorrow's Promise, Nat. Rev. Drug Discov., 8, 279 (2009); https://doi.org/10.1038/nrd2825
S. Jakka and M. Rossbach, An Economic Perspective on Personalized Medicine, HUGO J., 7, 1 (2013); https://doi.org/10.1186/1877-6566-7-1
D.E. Pritchard, F. Moeckel, M.S. Villa, L.T. Housman, C.A. McCarty and H.L. McLeod, Strategies for Integrating Personalized Medicine into Healthcare Practice, Per. Med., 14, 141 (2017); https://doi.org/10.2217/pme-2016-0064
E. Yuriev, J. Holien and P.A. Ramsland, Improvements, Trends, and New Ideas in Molecular Docking: 2012–2013 In Review, J. Mol. Recognit., 28, 581 (2015); https://doi.org/10.1002/jmr.2471
V. Malkhed, K.K. Mustyala, S.R. Potlapally and U. Vuruputuri, Identi-fication of Novel Leads Applying in silico Studies for Mycobacterium Multidrug Resistant (Mmr) Protein, J. Biomol. Struct. Dyn., 32, 1889 (2014); https://doi.org/10.1080/07391102.2013.842185
R. Dumpati, V. Ramatenki, R. Vadija, S. Vellanki and U. Vuruputuri, Structural Insights into Suppressor of Cytokine Signaling 1 Protein- Identification of New Leads for Type 2 Diabetes mellitus, J. Mol. Recognit., 31, e2706 (2018); https://doi.org/10.1002/jmr.2706
C.M. Labbé, J. Rey, D. Lagorce, M. Vavruša, J. Becot, O. Sperandio, B.O. Villoutreix, P. Tufféry and M.A. Miteva, MTiOpenScreen: A Web Server for Structure-based Virtual Screening, Nucleic Acids Res., 43, W448 (2015); https://doi.org/10.1093/nar/gkv306
K.K. Mustyala, V. Malkhed, V.R.R. Chittireddy and U. Vuruputuri, Identification of Small Molecular Inhibitors for Efflux Protein: DrrA of Mycobacterium tuberculosis, Cell. Mol. Bioeng., 9, 190 (2016); https://doi.org/10.1007/s12195-015-0427-2
B. Boeckmann, A. Bairoch, R. Apweiler, M.-C. Blatter, A. Estreicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout and M. Schneider, The SWISS-PROT Protein Knowledge Base and its Supplement TrEMBL in 2003, Nucleic Acids Res., 31, 365 (2003); https://doi.org/10.1093/nar/gkg095
The UniProt Consortium, UniProt: A Hub for Protein Information, Nucleic Acids Res., 43, D204 (2015); https://doi.org/10.1093/nar/gku989
P. Artimo, M. Jonnalagedda, K. Arnold, D. Baratin, G. Csardi, E. de Castro, S. Duvaud, V. Flegel, A. Fortier, E. Gasteiger, A. Grosdidier, C. Hernandez, V. Ioannidis, D. Kuznetsov, R. Liechti, S. Moretti, K. Mostaguir, N. Redaschi, G. Rossier, I. Xenarios and H. Stockinger, ExPASy: SIB Bioinformatics Resource Portal, Nucleic Acids Res., 40, W597 (2012); https://doi.org/10.1093/nar/gks400
E. Gasteiger, ExPASy: the Proteomics Server for In-Depth Protein Knowledge and Analysis, Nucleic Acids Res., 31, 3784 (2003); https://doi.org/10.1093/nar/gkg563
A. Pertsemlidis and J.W. Fondon III, Having a BLAST with Bioinformatics (and Avoiding BLASTphemy), Genome Biol., 2, 1 (2001); https://doi.org/10.1186/gb-2001-2-10-reviews2002
J.A. Cuff and G.J. Barton, Evaluation and Improvement of Multiple Sequence Methods for Protein Secondary Structure Prediction, Proteins, 34, 508 (1999); https://doi.org/10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4
J. Soding, A. Biegert and A.N. Lupas, The HHpred Interactive Server for Protein Homology Detection and Structure Prediction, Nucleic Acids Res., 33, W244 (2005); https://doi.org/10.1093/nar/gki408
K. Bhargavi, P.K. Chaitanya, D. Ramasree, M. Vasavi, D.K. Murthy and V. Uma, Homology Modeling and Docking Studies of Human Bcl-2L10 Protein, J. Biomol. Struct. Dyn., 28, 379 (2010); https://doi.org/10.1080/07391102.2010.10507367
V. Ahola, T. Aittokallio, M. Vihinen and E. Uusipaikka, A Statistical Score for Assessing the Quality of Multiple Sequence Alignments, A Statistical Score for Assessing the Quality of Multiple Sequence Alignments, BMC Bioinformatics, 7, 484 (2006); https://doi.org/10.1186/1471-2105-7-484
A. Šali, L. Potterton, F. Yuan, H. van Vlijmen and M. Karplus, Evaluation of Comparative Protein Modeling by MODELLER, Proteins, 23, 318 (1995); https://doi.org/10.1002/prot.340230306
N. Guex and M.C. Peitsch, SWISS-MODEL and the Swiss-Pdb Viewer: An Environment for Comparative Protein Modeling, Electrophoresis, 18, 2714 (1997); https://doi.org/10.1002/elps.1150181505
R.A. Laskowski, M.W. Macarthur, D.S. Moss and J.M. Thornton, PROCHECK: A Program to Check the Stereochemical Quality of Protein Structures, J. Appl. Cryst., 26, 283 (1993); https://doi.org/10.1107/S0021889892009944
M. Wiederstein and M.J. Sippl, ProSA-Web: Interactive Web Service for the Recognition of Errors in Three-dimensional Structures of Proteins, Nucleic Acids Res., 35, W407 (2007); https://doi.org/10.1093/nar/gkm290
J. Dundas, Z. Ouyang, J. Tseng, A. Binkowski, Y. Turpaz and J. Liang, CASTp: Computed Atlas of Surface Topography of Proteins with Structural and Topographical Mapping of Functionally Annotated Residues, Nucleic Acids Res., 34, W116 (2006); https://doi.org/10.1093/nar/gkl282
D. Duhovny, R. Nussinov and H.J. Wolfson, Efficient Unbound Docking of Rigid Molecules, In: Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) (2002).
D. Schneidman-Duhovny, Y. Inbar, R. Nussinov and H.J. Wolfson, PatchDock and SymmDock: Servers for Rigid and Symmetric Docking, Nucleic Acids Res., 33, W363 (2005); https://doi.org/10.1093/nar/gki481
D.S. Goodsell and A.J. Olson, Automated Docking of Substrates to Proteins by Simulated Annealing, Proteins Struct. Funct. Bioinform., 8, 195 (1990); https://doi.org/10.1002/prot.340080302
G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell and A.J. Olson, AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility, J. Comput. Chem., 30, 2785 (2009); https://doi.org/10.1002/jcc.21256
M.M. Jaghoori, B. Bleijlevens and S.D. Olabarriaga, 1001 Ways to Run AutoDock Vina for Virtual Screening, J. Comput. Aided Mol. Des., 30, 237 (2016); https://doi.org/10.1007/s10822-016-9900-9
M.A. Rauf, S. Zubair and A. Azhar, Ligand Docking and Binding Site Analysis with Pymol and Autodock/Vina, Int. J. Basic Appl. Sci., 4, 168 (2015); https://doi.org/10.14419/ijbas.v4i2.4123
Y. Wang, T. Suzek, J. Zhang, J. Wang, S. He, T. Cheng, B.A. Shoemaker, A. Gindulyte and S.H. Bryant, PubChem BioAssay: 2014 Update, Nucleic Acids Res., 42, D1075 (2014); https://doi.org/10.1093/nar/gkt978
A. Daina, O. Michielin and V. Zoete, SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-likeness and Medicinal Chemistry Friendliness of Small Molecules, Sci. Rep., 7, 42717 (2017); https://doi.org/10.1038/srep42717
A. Daina and V. Zoete, A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem, 11, 1117 (2016); https://doi.org/10.1002/cmdc.201600182
M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis and T.L. Madden, NCBI BLAST: A Better Web Interface, Nucleic Acids Res., 36, 5 (2008); https://doi.org/10.1093/nar/gkn201
S. Karlin and S.F. Altschul, Methods for Assessing the Statistical Significance of Molecular Sequence Features by Using General Scoring Schemes, Proc. Natl. Acad. Sci. USA, 87, 2264 (1990); https://doi.org/10.1073/pnas.87.6.2264
A. Drozdetskiy, C. Cole, J. Procter and G.J. Barton, JPred4: A Protein Secondary Structure Prediction Server, Nucleic Acids Res., 43, 389 (2015); https://doi.org/10.1093/nar/gkv332
J. Söding, Protein Homology Detection by HMM-HMM Comparison, Bioinformatics, 21, 951 (2005); https://doi.org/10.1093/bioinformatics/bti125
W. Kaplan and T.G. Littlejohn, Swiss-PDB Viewer (Deep View), Brief. Bioinform., 2, 195 (2001); https://doi.org/10.1093/bib/2.2.195
M. Feig, Local Protein Structure Refinement via Molecular Dynamics Simulations with locPREFMD, J. Chem. Inf. Model., 56, 1304 (2016); https://doi.org/10.1021/acs.jcim.6b00222
D. Schneidman-Duhovny, Y. Inbar, V. Polak, M. Shatsky, I. Halperin, H. Benyamini, A. Barzilai, O. Dror, N. Haspel, R. Nussinov and H.J. Wolfson, Taking Geometry to its Edge: Fast Unbound Rigid (And Hinge-bent) Docking, Proteins, 52, 107 (2003); https://doi.org/10.1002/prot.10397
R. Vadija, K.K. Mustyala, N. Nambigari, R. Dulapalli, R.K. Dumpati, V. Ramatenki, S.P. Vellanki and U. Vuruputuri, Homology Modeling and Virtual Screening Studies of FGF-7 Protein-A Structure-based Approach to Design New Molecules Against Tumor Angiogenesis, J. Chem. Biol., 9, 69 (2016); https://doi.org/10.1007/s12154-016-0152-x
S.P. Vellanki, R. Dulapalli, B. Kondagari, N. Nambigari, R. Vadija, V. Ramatenki, R.K. Dumpati and U. Vuruputuri, Structural Evaluation and Binding Mode Analysis of CCL19 and CCR7 Proteins-Identification of Novel Leads for Rheumatic and Autoimmune Diseases: An In silico study, Interdiscip. Sci. Comput. Life Sci., 10, 346 (2018); https://doi.org/10.1007/s12539-017-0212-0
N.M.F.S.A. Cerqueira, D. Gesto, E.F. Oliveira, D. Santos-Martins, N.F. Brás, S.F. Sousa, P.A. Fernandes and M.J. Ramos, Receptor-based Virtual Screening Protocol for Drug Discovery, Arch. Biochem. Biophys., 582, 56 (2015); https://doi.org/10.1016/j.abb.2015.05.011
M.W. Chang, C. Ayeni, S. Breuer and B.E. Torbett, Virtual Screening for HIV Protease Inhibitors: A Comparison of AutoDock 4 and Vina, PLoS One, 5, e11955 (2010); https://doi.org/10.1371/journal.pone.0011955
S. Tian, J. Wang, Y. Li, D. Li, L. Xu and T. Hou, The Application of in silico Drug-Likeness Predictions in Pharmaceutical Research, Adv. Drug Deliv. Rev., 86, 2 (2015); https://doi.org/10.1016/j.addr.2015.01.009
A. Breier, L. Gibalova, M. Seres, M. Barancik and Z. Sulova, New Insight into P-Glycoprotein as a Drug Target, Anticancer. Agents Med. Chem., 13, 159 (2012); https://doi.org/10.2174/1871520611307010159
S.J. Park, H. Baars, S. Mersmann, H. Buschmann, J.M. Baron, P.M. Amann, K. Czaja, H. Hollert, K. Bluhm, R. Redelstein and C. Bolm, N-Cyano Sulfoximines: COX Inhibition, Anticancer Activity, Cellular Toxicity, and Mutagenicity, ChemMedChem, 8, 217 (2013); https://doi.org/10.1002/cmdc.201200403
C. Betsholtz, Double Function at the Blood-Brain Barrier, Nature, 509, 432 (2014); https://doi.org/10.1038/nature13339