Main Article Content

Abstract

The study of solid liquid dispersions of binary drug system has been very useful in providing the significant enhanced pharmaceutical properties as compared to the parent drug. The present communication includes the thermodynamic and interfacial investigation of phenothiazine and acetanilide binary eutectic and non-eutectic drug dispersions. Simple eutectic dispersion was observed at 0.855 mole fraction of acetanilide at melting temperature 108 °C. Partial and integral thermodynamic quantities such as, excess Gibbs energy (gE), excess enthalpy (hE), excess entropy (sE) of eutectic and non-eutectic mixtures were also calculated using activity coefficient data. The value of excess Gibbs free energy indicates positive deviation from ideal behaviour which refers stronger association between like molecules during formation of binary mixture. However, the negative value of mixing function, Gibbs free energy of mixing (ΔGM) suggests the mixing for eutectic and non-eutectic is spontaneous. The interfacial properties such as entropy of fusion per unit volume (ΔSV), interfacial energy (σ), roughness parameter (α), grain boundary energy of parent components, eutectics and non-eutectics have been studied using enthalpy of fusion data. Gibbs-Thomson coefficient evaluated by numerical method is also very helpful to compute the interfacial energy. The size of critical nucleus at different undercoolings has been found in nanoscale, which is itself a big challenge in pharma-ceutical world. The value of α > 2, suggests the irregular and faceted growth proceeds in binary alloys.

Keywords

Phase diagram Thermodynamic and mixing functions Thermal stability Critical radius Interfacial energy Microstructure

Article Details

How to Cite
Shekhar, H., & Kumar, M. (2016). Phase Diagram, Thermodynamic Stability and Interfacial Studies on Solid Dispersions of Phenothiazine-Acetanilide Drug System. Asian Journal of Organic & Medicinal Chemistry, 1(1), 26–32. https://doi.org/10.14233/ajomc.2016.AJOMC-P12

References

  1. S.D. Srivastava and P. Kohli, Proc. Nat. Acad. Sci. India, 77, 199 (2007).
  2. W. Fang and T. Jie, Acta Pharmacol. Sin., 24, 1001 (2003).
  3. A. Rajasekaran and P.P. Tripathi, Acta Pharm. Turc., 45, 235 (2003).
  4. B.P. Kamat and J. Seetharamappa, J. Pharm. Biomed. Anal., 35, 655 (2004); http://dx.doi.org/10.1016/j.jpba.2004.02.008.
  5. A.U. Gjerde, H. Holmsen and W. Nerdal, Biochim. Biophys. Acta, 1682, 28 (2004); http://dx.doi.org/10.1016/j.bbalip.2004.01.004.
  6. K. Dhirendra, S. Lewis, N. Udupa and K. Atin, Pak. J. Pharm. Sci., 22, 234 (2009).
  7. A.O.L. Évora, R.A.E. Castro, T.M.R. Maria, M.T.S. Rosado, M. Ramos Silva, A.M. Beja, J. Canotilho and M.E.S. Eusébio, Cryst. Growth Des., 11, 4780 (2011); http://dx.doi.org/10.1021/cg200288b.
  8. J.W. Rice and E.M. Suuberg, J. Chem. Thermodyn., 42, 1356 (2010); http://dx.doi.org/10.1016/j.jct.2010.05.019.
  9. S. Dastidar, J. Kristiansen, J. Molnar and L. Amaral, Antibiotics, 2, 58 (2013); http://dx.doi.org/10.3390/antibiotics2010058.
  10. R. Sharma, P. Samadhiya, S.D. Srivastava and S.K. Srivastava, J. Chem. Sci., 124, 633 (2012); http://dx.doi.org/10.1007/s12039-012-0257-x.
  11. J.S. Chickos, W.E. Acree and J.F. Liebman, J. Phys. Chem. Ref. Data, 28, 1535 (1999); http://dx.doi.org/10.1063/1.556045.
  12. J. Sangster, J. Phys. Chem. Ref. Data, 28, 889 (1999); http://dx.doi.org/10.1063/1.556040.
  13. A.K. Aggarwal and S. Jain, Chem. Pharm. Bull. (Tokyo), 59, 629 (2011); http://dx.doi.org/10.1248/cpb.59.629.
  14. B.L. Sharma, S. Tandon and S. Gupta, Cryst. Res. Technol., 44, 258 (2009); http://dx.doi.org/10.1002/crat.200800034.
  15. R. Malaviolle, G. De Maury, A. Chauvet, A. Terol and J. Masse, Thermochim. Acta, 121, 283 (1987); http://dx.doi.org/10.1016/0040-6031(87)80179-X.
  16. H. Shekhar and S.S. Salim, Nat. Acad. Sci. Lett., 34, 117 (2011).
  17. P. Gupta, T. Agrawal, S.S. Das and N.B. Singh, J. Chem. Thermodyn., 48, 291 (2012); http://dx.doi.org/10.1016/j.jct.2012.01.001.
  18. M. Shamsuddin, S.B. Singh and A. Nasar, Thermochim. Acta, 316, 11 (1998); http://dx.doi.org/10.1016/S0040-6031(98)00291-3.
  19. N.B. Singh and M.E. Glicksman, J. Cryst. Growth, 98, 573 (1989); http://dx.doi.org/10.1016/0022-0248(89)90293-5.
  20. D. Turnbull, J. Chem. Phys., 18, 768 (1950); http://dx.doi.org/10.1063/1.1747765.
  21. M. Gunduz and J.D. Hunt, Acta Metall., 37, 1839 (1989); http://dx.doi.org/10.1016/0001-6160(89)90068-0.
  22. S. Akbulut, Y. Ocak, K. Keslioglu and N. Marasli, Appl. Surf. Sci., 255, 3594 (2009); http://dx.doi.org/10.1016/j.apsusc.2008.10.003.
  23. J.D. Hunt and S.Z. Lu, in ed.: D.T.J. Hurle, Hand Book of Crystal Growth, Elsevier, Amsterdam, p. 112 (1994).
  24. G.A. Chadwick, Metallography of Phase Transformation, Butterworths, London, p. 61 (1972).
  25. W.R. Wilcox, J. Cryst. Growth, 26, 153 (1974); http://dx.doi.org/10.1016/0022-0248(74)90218-8.
  26. J.D. Hunt and K.A. Jackson, Trans. Metall. Soc. AIME, 236, 843 (1966).
  27. H. Shekhar and V. Kant, J. Indiam Chem. Soc., 88, 947 (2011).
  28. T. Agrawal, P. Gupta, S.S. Das, A. Gupta and N.B. Singh, J. Chem. Eng. Data, 55, 4206 (2010); http://dx.doi.org/10.1021/je100358e.