Main Article Content

Abstract

An efficient chromenone synthesis by two component condensation of α-oxoketene dithioacetal and 2-hydroxy-1-benzaldehyde by catalytic amount of trifluroacetic acid in aqueous medium. The experimental procedure is simple, environmentally benign and gives good to excellent yield of products. This work may not only lead to environmentally benign systems but also will provide a newer aspect of organic chemistry in aqueous medium.

Keywords

Chromenones Water medium Trifluroacetic acid a-Oxoketene

Article Details

How to Cite
Ronibala Devi, L., & Mukherjee Singh, O. (2016). Facile Synthesis of Chromenone from α-Oxoketene Dithioacetal Catalyzed by Trifluroacetic Acid in Aqueous Medium. Asian Journal of Organic & Medicinal Chemistry, 1(1), 6–9. https://doi.org/10.14233/ajomc.2016.AJOMC-P2

References

  1. The Natural Coumarins: Occurrence, Chemistry and Biochemistry, R.D.H. Murray, J. Medez and S.A. Brown, Wiley, New York (1982).
  2. R. Pratap and V.J. Ram, Chem. Rev., 114, 10476 (2014); http:dx.doi.org/10.1021/cr500075s.
  3. R.D.H. Murray, Progr. Chem. Org. Nat. Prod., 72, 1 (1997).
  4. J. Mori, M. Iwashima, M. Takeuchi and H. Saito, Chem. Pharm. Bull. (Tokyo), 54, 391 (2006); http:dx.doi.org/10.1248/cpb.54.391.
  5. I. Manolov and N.D. Danchev, Eur. J. Med. Chem., 30, 531 (1995); http:dx.doi.org/10.1016/0223-5234(96)88266-3.
  6. I. Kostova, S. Bhatia, P. Grigorov, S. Balkansky, V.S. Parmar, A.K. Prasad and L. Saso, Curr. Med. Chem., 18, 3929 (2011); http:dx.doi.org/10.2174/092986711803414395.
  7. H. Sadraei, Y. Shokoohinia, S.E. Sajjadi and M. Mozafari, Res. Pharm. Sci., 8, 137 (2013).
  8. Coumarins: Biology, Applications and Mode of Action, R. O’Kennedy, R. D. Thornes, Wiley & Sons, Chichester (1997).
  9. I. Kostova, S. Bhatia, P. Grigorov, S. Balkansky, V.S. Parmar, A.K. Prasad and L. Saso, Curr. Med. Chem., 18, 3929 (2011); http:dx.doi.org/10.2174/092986711803414395.
  10. O.M. Singh, N.S. Devi, D.S. Thokchom and G.J. Sharma, Eur. J. Med. Chem., 45, 2250 (2010); http:dx.doi.org/10.1016/j.ejmech.2010.01.070.
  11. L. Wu, X. Wang, W. Xu, F. Farzaneh and R. Xu, Curr. Med. Chem., 16, 4236 (2009); http:dx.doi.org/10.2174/092986709789578187.
  12. M. Riveiro, N. De Kimpe, A. Moglioni, R. Vazquez, F. Monczor, C. Shayo and C. Davio, Curr. Med. Chem., 17, 1325 (2010); http:dx.doi.org/10.2174/092986710790936284.
  13. A. Gomez-Outes, M. Luisa Suarez-Gea, G. Calvo-Rojas, R. Lecumberri, E. Rocha, C. Pozo-Hernandez, A. Isabel Terleira-Fernandez and E. Vargas-Castrillon, Curr. Drug Discov. Technol., 9, 83 (2012); http:dx.doi.org/10.2174/1570163811209020083.
  14. H.V. Pechmann, Chem. Ber., 17, 929 (1884); http:dx.doi.org/10.1002/cber.188401701248.
  15. J.R. Jonson, Org. React., 1, 210 (1942).
  16. R.L. Shriner, Org. React., 1, 1 (1942).
  17. 17 N.S. Narasimhan, F.S. Mali and M.V. Barve, Synthesis, 906 (1979); http:dx.doi.org/10.1055/s-1979-28871.
  18. (a) G. Jones, Org. React., 15, 204 (1967);
  19. (b) F. Fringuelli, G. Brufola, O. Piermatti and F. Pizzo, Heterocycles, 43, 1257 (1996); http:dx.doi.org/10.3987/COM-96-7447.;
  20. R. Yavari, Hekmat-Shoar and A. Zonouzi, Tetrahedron Lett., 39, 2391 (1998); http:dx.doi.org/10.1016/S0040-4039(98)00206-8.
  21. O.M. Singh, N.S. Devi, L.R. Devi, K.B. Lim, Y.J. Yoon and S.-G. Lee, Bull. Korean Chem. Soc., 32, 175 (2011); http:dx.doi.org/10.5012/bkcs.2011.32.1.175.
  22. O.M. Singh and N.S. Devi, J. Org. Chem., 74, 3141 (2009); http:dx.doi.org/10.1021/jo802585b.
  23. N.S. Devi, S.J. Singh, L.R. Devi and O.M. Singh, Tetrahedron Lett., 54, 183 (2013); http:dx.doi.org/10.1016/j.tetlet.2012.10.126.