Main Article Content

Abstract

The efficiency of phosphated zirconia as a catalyst for the selected organic reactions in the liquid phase was investigated in a selfmodified batch type glass reactor. The PO4 3-/ZrO2 samples were prepared by treating zirconia with H3PO4 solution (0.5 M) followed by calcination at 523, 773 and 973 K. The prepared catalyst samples were characterized by XRD, SEM, EDX, BET surface area and pore size analyzer. The catalyst samples showed excellent catalytic activity for reactions such as ring-opening of epoxide with aniline, Aza- Michael addition reaction and Knoevenagel condensation reaction, at mild reaction conditions.

Keywords

Phosphated zirconia Liquid phase Organic reactions

Article Details

How to Cite
Kamal, H., Sadiq, M., Sadiq, S., Abid Zia, M., Ali, R., Sohail Ahmad, M., & Ali, Q. (2016). Catalytic Efficiency of Phosphated Zirconia in Selected Organic Reactions. Asian Journal of Organic & Medicinal Chemistry, 1(2), 66–70. https://doi.org/10.14233/ajomc.2016.AJOMC-P20

References

  1. Q. Zhao, J. Chu, T. Jiang and H. Yin, Korean J. Chem. Eng., 25, 1008 (2008); http://dx.doi.org/10.1007/s11814-008-0163-6.
  2. A. Corma, Chem. Rev., 95, 559 (1995); http://dx.doi.org/10.1021/cr00035a006.
  3. U.B. Demirci and F. Garin, Catal. Lett., 76, 45 (2001); http://dx.doi.org/10.1023/A:1016707621813.
  4. B.M. Reddy and P.M. Sreekanth, Tetrahedron Lett., 44, 4447 (2003); http://dx.doi.org/10.1016/S0040-4039(03)01034-7.
  5. B.M. Reddy, M.K. Patil, K.N. Rao and G.K. Reddy, J. Mol. Catal. Chem., 258, 302 (2006); http://dx.doi.org/10.1016/j.molcata.2006.05.065.
  6. R. Ranggong, Int. J. Social Sci. Res., 2, 39 (2013); http://dx.doi.org/10.5296/ijssr.v2i1.4634.
  7. K. Wilson and J.H. Clark, Pure Appl. Chem., 72, 1314 (2000); http://dx.doi.org/10.1351/pac200072071313.
  8. E.A. El-Sharkawy and S.S. Al-Shihry, Monatsh. Chem., 141, 259 (2010); http://dx.doi.org/10.1007/s00706-010-0250-3.
  9. G.D. Yadav and J.J. Nair, Micropor. Mesopor. Mater., 33, 1 (1999); http://dx.doi.org/10.1016/S1387-1811(99)00147-X.
  10. K. Arata, M. Hino and N. Yamagata, Bull. Chem. Soc. Jpn., 63, 244 (1990); http://dx.doi.org/10.1246/bcsj.63.244.
  11. D.J. Rosenberg and J.A. Anderson, Catal. Lett., 94, 109 (2004); http://dx.doi.org/10.1023/B:CATL.0000019339.91894.6e.
  12. V.K. Smitha, H. Suja, J. Jaeob and S. Sugunan, Sec., 42, 300 (2003).
  13. G.A.H. Mekhemer and H.M. Ismail, Colloids Surf. A, 164, 227 (2000); http://dx.doi.org/10.1016/S0927-7757(99)00370-2.
  14. B.M. Reddy, M.K. Patil and B.T. Reddy, Catal. Lett., 126, 413 (2008); http://dx.doi.org/10.1007/s10562-008-9646-7.
  15. Y.F. Wang, T. Izawa, S. Kobayashi and M. Ohno, J. Am. Chem. Soc., 104, 6465 (1982); http://dx.doi.org/10.1021/ja00387a060.
  16. F. Bigi, L. Chesini, R. Maggi and G. Sartori, J. Org. Chem., 64, 1033 (1999); http://dx.doi.org/10.1021/jo981794r.
  17. F. Freeman, Chem. Rev., 80, 329 (1980); http://dx.doi.org/10.1021/cr60326a004.
  18. L.F. Tietze, Chem. Rev., 96, 115 (1996); http://dx.doi.org/10.1021/cr950027e.
  19. M.L. Deb and P.J. Bhuyan, Tetrahedron Lett., 46, 6453 (2005); http://dx.doi.org/10.1016/j.tetlet.2005.07.111.
  20. K.B. Hansen, J.L. Leighton and E.N. Jacobsen, J. Am. Chem. Soc., 118, 10924 (1996); http://dx.doi.org/10.1021/ja962600x.
  21. A.K. Kinage, P.P. Upara, A.B. Shivarker and S.P. Gupte, Chemistry, 1, 76 (2011).
  22. H. Vahedi, A. Massoudi and S. Hosseini, Int. J. Chem. Technol. Res., 4, 1654 (2012).