Main Article Content

Abstract

Polyethylene glycol (PEG) was found to be an effective and nontoxic reaction medium for the one-pot synthesis of functionalized pyrroles under catalyst-free conditions in excellent yields. Environmental acceptability, low cost, high yields and recyclability of the PEG are the important features of this protocol.

Keywords

Functionalized pyrroles Amines Aromatic aldehydes and Nitroalkanes Polyethylene glycol 1,3-Dicarbonyl compounds Catalyst-free conditions

Article Details

How to Cite
Ramesh, P., & Bhaskar, K. (2016). Polyethylene Glycol (PEG-400) as an Efficient and Recyclable Reaction Medium for Four-Component Coupling One-Pot Synthesis of Functionalized Pyrroles under Catalyst-free Conditions. Asian Journal of Organic & Medicinal Chemistry, 1(2), 61–65. https://doi.org/10.14233/ajomc.2016.AJOMC-P18

References

  1. D. O’Hagan, Nat. Prod. Rep., 17, 435 (2000); http://dx.doi.org/10.1039/a707613d.
  2. C.T. Walsh, S. Garneau-Tsodikova and A.R. Howard-Jones, Nat. Prod. Rep., 23, 517 (2006); http://dx.doi.org/10.1039/b605245m.
  3. J.W. Huffman, Curr. Med. Chem., 6, 705 (1999).
  4. M. Kidwai, R. Venktaramanan, R. Mohan and P. Sapra, Curr. Med. Chem., 9, 1209 (2002); http://dx.doi.org/10.2174/0929867023370059.
  5. G. La Regina, R. Silvestri, M. Artico, A. Lavecchia, E. Novellino, O. Befani, P. Turini and E. Agostinelli, Med. Chem., 50, 922 (2007); http://dx.doi.org/10.1021/jm060882y.
  6. D.L. Boger, C.W. Boyce, M.A. Labroli, C.A. Sehon and Q. Jin, J. Am. Chem. Soc., 121, 54 (1999); http://dx.doi.org/10.1021/ja982078+.
  7. M. Abid, S.M. Landge and B. Torok, Org. Prep. Proced. Int., 38, 495 (2006); http://dx.doi.org/10.1080/00304940609356444.
  8. A. Facchetti, A. Abbotto, L. Beverina, M.E. van der Boom, P. Dutta, G. Evmenenko, G.A. Pagani and T.J. Marks, Chem. Mater., 15, 1064 (2003); http://dx.doi.org/10.1021/cm020929d.
  9. S. Pu, G. Liu, L. Shen and J. Xu, Org. Lett., 9, 2139 (2007); http://dx.doi.org/10.1021/ol070622q.
  10. O.V. Larionov and A. de Meijere, Angew. Chem. Int. Ed., 44, 5664 (2005); http://dx.doi.org/10.1002/anie.200502140.
  11. G. Minetto, L.F. Raveglia, A. Sega and M. Taddei, Eur. J. Org. Chem., 5277 (2005); http://dx.doi.org/10.1002/ejoc.200500387.
  12. C.M. Shiner and T.D. Lash, Tetrahedron, 61, 11628 (2005); http://dx.doi.org/10.1016/j.tet.2005.10.019.
  13. S.J. Hwang, S.H. Cho and S. Chang, J. Am. Chem. Soc., 130, 16158 (2008); http://dx.doi.org/10.1021/ja806897h
  14. M. Abid, L. Teixeira and B. Torok, Org. Lett., 10, 933 (2008); http://dx.doi.org/10.1021/ol703095d.
  15. Y.D. La and B.A. Arndtsen, Angew. Chem. Int. Ed., 47, 5430 (2008); http://dx.doi.org/10.1002/anie.200801385.
  16. W.A. Denny, G.W. Rewcastle and B.C. Baguley, J. Med. Chem., 33, 814 (1990); http://dx.doi.org/10.1021/jm00164a054.
  17. E. Toja, D. Selva and P. Schiatti, J. Med. Chem., 27, 610 (1984); http://dx.doi.org/10.1021/jm00371a010.
  18. V.J. Demopoulos and E. Rekka, J. Pharm. Sci., 84, 79 (1995); http://dx.doi.org/10.1002/jps.2600840119.
  19. R.W. Burli, D. McMinn, J.A. Kaizerman, W. Hu, Y. Ge, Q. Pack, V. Jiang, M. Gross, M. Garcia, R. Tanaka and H.E. Moser, Bioorg. Med. Chem. Lett., 14, 1253 (2004); http://dx.doi.org/10.1016/j.bmcl.2003.12.042.
  20. J. Lehuédé, B. Fauconneau, L. Barrier, M. Ourakow, A. Piriou and J.-M. Vierfond, Eur. J. Med. Chem., 34, 991 (1999); http://dx.doi.org/10.1016/S0223-5234(99)00111-7.
  21. M. Del Poeta, W.A. Schell, C.C. Dykstra, S. Jones, R.R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin and J.R. Perfect, Antimicrob. Agents Chemother., 42, 2495 (1998).
  22. A. Hantzsch, Ber. Dtsch. Chem. Ges., 23, 1474 (1890); http://dx.doi.org/10.1002/cber.189002301243.
  23. G. Kaupp, J. Schmeyers, A. Kuse and A. Atfeh, Angew. Chem. Int. Ed., 38, 2896 (1999); http://dx.doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2896:: AID-ANIE2896>3.0.CO;2-3.
  24. V.S. Matiychuk, R.L. Martyak, N.D. Obushak, Y.V. Ostapiuk and N.I. Pidlypnyi, Chem. Heterocycl. Compd., 40, 1218 (2004); http://dx.doi.org/10.1023/B:COHC.0000048299.17625.7f.
  25. L. Knorr, Ber. Dtsch. Chem. Ges., 17, 1635 (1884); http://dx.doi.org/10.1002/cber.18840170220.
  26. G.M. Manley, M.J. Kalman, B.G. Conway, C.C. Ball, J.L. Havens and R. Vaidyanathan, J. Org. Chem., 68, 6447 (2003); http://dx.doi.org/10.1021/jo034304q.
  27. C.J. Nikhil, B.J. Prashant, V.P. Hemalata and N.T. Vikas, Tetrahedron Lett., 54, 3019 (2011).
  28. S. Maiti, S. Biswas and U. Jana, J. Org. Chem., 75, 1674 (2010); http://dx.doi.org/10.1021/jo902661y.
  29. L. Nagarapu, R. Mallepalli, L. Yeramanchi and R. Bantu, Tetrahedron Lett., 52, 3401 (2011); http://dx.doi.org/10.1016/j.tetlet.2011.04.095.
  30. L. Nagarapu, R. Mallepalli, G. Arava and L. Yeramanchi, Eur. J. Chem., 1, 228 (2010); http://dx.doi.org/10.5155/eurjchem.1.3.228-231.172.
  31. R. Mallepalli, L. Yeramanchi, R. Bantu and L. Nagarapu, Synlett, 2730 (2011); http://dx.doi.org/10.1055/s-0031-1289542.
  32. L. Nagarapu, R. Mallepalli, U. Nikhil Kumar, P. Venkateswarlu, R. Bantu and L. Yeramanchi, Tetrahedron Lett., 53, 1699 (2012); http://dx.doi.org/10.1016/j.tetlet.2012.01.045.
  33. M. Raghu, M. Rajasekhar, B. Chandra Obula Reddy, C. Suresh Reddy and B.V. Subba Reddy, Tetrahedron Lett., 54, 3503 (2013); http://dx.doi.org/10.1016/j.tetlet.2013.04.089.