Main Article Content

Abstract

The present investigation reports design of a new pH responsive polymeric material from shellac for pharmaceutical applications. The material was prepared from the combination of shellac and glycine. Acrylic acid was used to incorporate pH responsive characteristics in the material. The material was characterized using Fourier transform infrared spectroscopy, thermogravimetric analysis and scanning electron micrograph techniques. The thermal stability and the kinetics of material decomposition were evaluated using various mathematical models. The kinetics of controlled release of 5-amino salicylic acid was studied in buffer medium using Fick’s model equation.

Keywords

Shellac Glycine pH responsive Controlled release 5-Amino salicylic acid

Article Details

How to Cite
Barik, A., Patnaik, T., Parhi, P., & Dey, R. (2016). pH Responsive Shellac for Pharmaceutical Applications: Preparation, Thermal Stability and Controlled Release of 5-Amino salicylic Acid. Asian Journal of Organic & Medicinal Chemistry, 1(2), 45–50. https://doi.org/10.14233/ajomc.2016.AJOMC-P8

References

  1. N. Mohamad, M.C.I. Mohd Amin, M. Pandey, N. Ahmad and N.F. Rajab, Carbohydr. Polym., 114, 312 (2014); http://dx.doi.org/10.1016/j.carbpol.2014.08.025.
  2. J.-Y. Lai, Mater. Sci. Eng. C, 51, 28 (2015); http://dx.doi.org/10.1016/j.msec.2015.02.021.
  3. S. Lin, Y. Guo, X. Li and Y. Liu, Mater. Lett., 152, 102 (2015); http://dx.doi.org/10.1016/j.matlet.2015.03.099.
  4. Z. Zhang, L. Chen, C. Zhao, Y. Bai, M. Deng, H. Shan, X. Zhuang, X. Chen and X. Jing, Polymer, 52, 676 (2011); http://dx.doi.org/10.1016/j.polymer.2010.12.048.
  5. S. Mirdarikvande, L. Mansouri, M. Alahyari, H. Sadeghi, H. Shasavari and F. Khani, Biosci. Biotechnol. Res. Asia, 11, 67 (2014); http://dx.doi.org/10.13005/bbra/1234.
  6. T. Gyenes, V. Torma, B. Gyarmati and M. Zrínyi, Acta Biomater., 4, 733 (2008); http://dx.doi.org/10.1016/j.actbio.2007.12.004.
  7. W.E. Hennink, O. Franssen, W.N.E. van Dijk-Wolthuis and H. Talsma, J. Control. Release, 48, 107 (1997); http://dx.doi.org/10.1016/S0168-3659(97)00047-3.
  8. C.K. Simi and T. Emilia Abraham, Eur. J. Pharm. Sci., 32, 17 (2007); http://dx.doi.org/10.1016/j.ejps.2007.05.003.
  9. E.R. Pérez, D.M. García-Cruz, M.C. Araque-Monros, U. Gomez-Pinedo, M.M. Pradas and J.L. Escobar-Ivirico, J. Bioact. Compat. Polym., 28, 50 (2013); http://dx.doi.org/10.1177/0883911512469710.
  10. R.Y. Tam, M.J. Cooke and M.S. Shoichet, J. Mater. Chem., 22, 19402 (2012); http://dx.doi.org/10.1039/c2jm33680d.
  11. S. Rothemund, T.B. Aigner, A. Iturmendi, M. Rigau, B. Husár, F. Hildner, E. Oberbauer, M. Prambauer, G. Olawale, R. Forstner, R. Liska, K.R. Schröder, O. Brüggemann and I. Teasdale, Macromol. Biosci., 15, 351 (2015); http://dx.doi.org/10.1002/mabi.201400390.
  12. S.G. Roy and P. De, Polymer, 55, 5425 (2014); http://dx.doi.org/10.1016/j.polymer.2014.08.072.
  13. Y. Farag and C.S. Leopold, Eur. J. Pharm. Sci., 42, 400 (2011); http://dx.doi.org/10.1016/j.ejps.2011.01.006.
  14. J. Al-Gousous, M. Penning, P. Langguth, J. Al-Gousous, M. Penning and P. Langguth, Int. J. Pharm., 484, 283 (2015); http://dx.doi.org/10.1016/j.ijpharm.2014.12.060.
  15. V. Ravi, Siddaramaiah and T.M. Pramod Kumar, J. Mater. Sci. Mater. Med., 19, 2131 (2008); http://dx.doi.org/10.1007/s10856-007-3155-x.
  16. R.K. Dey, G.S. Tiwary, T. Patnaik and U. Jha, Polym. Bull., 66, 583 (2011); http://dx.doi.org/10.1007/s00289-010-0294-x.
  17. J. Bae and J.W. Park, Trop. J. Pharm. Res., 14, 363 (2015); http://dx.doi.org/10.4314/tjpr.v14i3.2.
  18. S. Limmatvapirat, C. Limmatvapirat, S. Puttipipatkhachorn, J. Nuntanid and M. Luangtana-anan, Eur. J. Pharm. Biopharm., 67, 690 (2007); http://dx.doi.org/10.1016/j.ejpb.2007.04.008.
  19. S. Limmatvapirat, C. Limmatvapirat, S. Puttipipatkhachorn, J. Nunthanid, M. Luangtana-Anan and P. Sriamornsak, Eur. J. Pharm. Biopharm., 69, 1004 (2008); http://dx.doi.org/10.1016/j.ejpb.2008.01.027.
  20. J. Li, Z. Wang, X. Yang, L. Hu, Y. Liu and C. Wang, J. Anal. Appl. Pyrolysis, 80, 247 (2007); http://dx.doi.org/10.1016/j.jaap.2007.03.001.
  21. G.G. Mohamed, H.F. Abd El-Halim, M.M.I. El-Dessouky and W.H. Mahmoud, J. Mol. Struct., 999, 29 (2011); http://dx.doi.org/10.1016/j.molstruc.2011.05.018.
  22. M. Rabesiaka, M. Sghaier, B. Fraisse, C. Porte, J.-L. Havet and E. Dichi, J. Cryst. Growth, 312, 1860 (2010); http://dx.doi.org/10.1016/j.jcrysgro.2010.03.011.
  23. A.S. Abu-Bakar and K.A.M. Moinuddin, Effects of Variation in Heating Rate, Sample Mass and Nitrogen Flow on Chemical Kinetics for Pyro-lysis, 18th Australasian Fluid Mechanics Conference Launceston, Australia 3-7 December 2012.
  24. E. Apaydin-Varol, S. Polat and A.E. Putun, Thermal Sci., 18, 833 (2014); http://dx.doi.org/10.2298/TSCI1403833A.
  25. S. Limmatvapirat, D. Panchapornpon, C. Limmatvapirat, J. Nunthanid, M. Luangtana-Anan and S. Puttipipatkhachorn, Eur. J. Pharm. Biopharm., 70, 335 (2008); http://dx.doi.org/10.1016/j.ejpb.2008.03.002.
  26. J. Berger, M. Reist, J.M. Mayer, O. Felt, N.A. Peppas and R. Gurny, Eur. J. Pharm. Biopharm., 57, 19 (2004); http://dx.doi.org/10.1016/S0939-6411(03)00161-9.
  27. D. Phan The, F. Debeaufort, D. Luu and A. Voilley, J. Membr. Sci., 325, 277 (2008); http://dx.doi.org/10.1016/j.memsci.2008.07.052.
  28. S.A. Agnihotri and T.M. Aminabhavi, J. Control. Release, 96, 245 (2004); http://dx.doi.org/10.1016/j.jconrel.2004.01.025.
  29. B.M. Vogel and S.K. Mallapragada, Biomaterials, 26, 721 (2005); http://dx.doi.org/10.1016/j.biomaterials.2004.03.024.
  30. L. Serra, J. Doménech and N.A. Peppas, Biomaterials, 27, 5440 (2006); http://dx.doi.org/10.1016/j.biomaterials.2006.06.011.