Main Article Content

Abstract

5-Bromo-1-benzofuran-2-carbohydrazide was synthesized by known literature method from 5-bromosalicylaldehyde. To deduce the antibacterial and anticancer activity of the 5-bromo-1-benzofuran-2- carbohydrazide, it is docked with different biomarkers of cancer cell and bacteria. Grid was generated for each oncoproteins by specifying the active site amino acids. The binding model of best scoring analogue with each protein was assessed from their G-scores and disclosed by docking analysis using the XP visualizer tool. An analysis of the receptor-ligand interaction studies revealed that 5-bromo-1- benzofuran-2-carbohydrazide is most active against 3LAU (Aurora- 2 kinase) and 4BBG (human kinesin Eg5) biomarkers and have the features to prove themselves as antituberculosis drugs. The Cramer rules of toxicity predicts the toxicological hazard (when administered orally) from the molecular structure. It shows that it is of class III toxic compound. The antituberculosis studies show that it shows good activity against Mycobacterium tuberculosis (H37 RV strain).

Keywords

Benzofuran ethyl ester Molecular docking Anticancer Tuberculosis activity

Article Details

How to Cite
R. Thorat, B., B. Thorat, V., More, K., Jagtap, R., & S. Yamgar, R. (2016). Synthesis, Molecular Docking, SAR Study and Antituberculosis Activity of 5-Bromo-1-benzofuran-2-carbohydrazide. Asian Journal of Organic & Medicinal Chemistry, 1(3), 71–79. https://doi.org/10.14233/ajomc.2016.AJOMC-P21

References

  1. G.N. Walker and R.T. Smith, J. Org. Chem., 36, 305 (1971); http://dx.doi.org/10.1021/jo00801a013.
  2. E. Bisagni, C. Jolivet, C. Rivalle and A. Croisy, Heterocycles, 43, 641 (1996); http://dx.doi.org/10.3987/COM-95-7342.
  3. G.K. Rao, N.K. Rao and P.N. Rao, J. Pharmacol. Toxicol., 2, 481 (2007); http://dx.doi.org/10.3923/jpt.2007.481.488.
  4. S.M. Abdel-Wahhab and L.S. El-Assal, J. Chem. Soc. C, 867 (1968); http://dx.doi.org/10.1039/J39680000867 .
  5. L.H. Edwards, US4500539, US Appl. 83-514073 (1946).
  6. H. Paul and D. Stoye, in ed.: The Chemistry of Hydrazide, In: Chemistry of Amides, J. Zabicky, John Wiley & Sons, Chap. 10, p. 515 (1970).
  7. H. Khanam and S. Uzzaman, Eur. J. Med. Chem., 97, 483 (2015); http://dx.doi.org/10.1016/j.ejmech.2014.11.039.
  8. J.W. Mason, N. Eng. J. Med. Chem., 316, 455 (1987); http://dx.doi.org/10.1056/NEJM198702193160807.
  9. G. Santwana, Asian J. Chem., 15, 250 (2003).
  10. M.B. Halli and Z.S. Qureshi, J. Indian Council Chem., 25, 1 (2008).
  11. R. Madhu and M.D. Karvekar, Int. J. Pharm. Pharm. Sci., 2, 6466 (2010).
  12. G. Parameshwarappa, B. Raga, S.O. Khandre and S.S. Sangapure, Heterocycl. Commun., 15, 335 (2009); http://dx.doi.org/10.1515/HC.2009.15.5.335.
  13. H. Dumont and S. Kostanecki, Chem. Ber., 42, 911 (1909); http://dx.doi.org/10.1002/cber.190904201149.
  14. H. Kwiecien, Pol. J. Chem., 72, 2254 (1998).
  15. K.A. Korthals and W.D. Wulff, J. Am. Chem. Soc., 130, 2898 (2008); http://dx.doi.org/10.1021/ja077579m.
  16. B.A. D’Sa, P. Kisanga and J.G. Verkade, Synlett, 670 (2001); http://dx.doi.org/10.1055/s-2001-13377.
  17. D. Bogdal, S. Bednarz and M. Lukasiewicz, Tetrahedron, 62, 9440 (2006); http://dx.doi.org/10.1016/j.tet.2006.07.038.
  18. G. Kumaraswamy, G. Ramakrishna, R. Raju and M. Padmaja, Tetrahedron, 66, 9814 (2010); http://dx.doi.org/10.1016/j.tet.2010.10.074.
  19. H. Guo, H. Shao, Z. Yang, S. Xue, X. Li, Z. Liu, X. He, J. Jiang, Y. Zhang, S. Si and Z. Li, J. Med. Chem., 53, 1819 (2010); http://dx.doi.org/10.1021/jm901685n.
  20. P.A. Coates, P. Grundt, E.S.J. Robinson, D.J. Nutt, R. Tyacke, A.L. Hudson, J.W. Lewis and S.M. Husbands, Bioorg. Med. Chem. Lett., 10, 605 (2000); http://dx.doi.org/10.1016/S0960-894X(00)00062-7.
  21. B. Krassowska, U. Markowska and Z. Eckstein, Przemysl Chem., 52, 741 (1973).
  22. N.G. Kundu, M. Pal, J.S. Mahanty and M. De, J. Chem. Soc., Perkin Trans. 1, 1997, 2815 (1997); http://dx.doi.org/10.1039/a703305b.
  23. M.W. Khan, M.J. Alam, M.A. Rashid and R. Chowdhury, Bioorg. Med. Chem., 13, 4796 (2005); http://dx.doi.org/10.1016/j.bmc.2005.05.009.
  24. I.N. Junior, M.C.S. Lourenco, M. das G.M.O. Henriques, B. Ferreira, T.R.A. Vasconcelos, M.A. Peralta, P.S.M. de Oliveira, S.M.S.V. Wardell and M.V.N. de Souza, Drug Des. Discov., 2, 563 (2005); http://dx.doi.org/10.2174/157018005774479131.
  25. M.L. Ferreira, T.R.A. Vasconcelos, E.M. De Carvalho, M.C.S. Lourenço, S.M.S.V. Wardell, J.L. Wardell, V.F. Ferreira and M.V.N. De Souza, Carbohydr. Res., 344, 2042 (2009); http://dx.doi.org/10.1016/j.carres.2009.08.006.
  26. S.A. Carvalho, E.F. Da Silva, M.V.N. De Souza, M.C.S. Lourenço and F.R. Vicente, Bioorg. Med. Chem. Lett., 18, 538 (2008); http://dx.doi.org/10.1016/j.bmcl.2007.11.091.
  27. M.J. Hearn, M.H. Cynamon, M.F. Chen, R. Coppins, J. Davis, H. Joo-On Kang, A. Noble, B. Tu-Sekine, M.S. Terrot, D. Trombino, M. Thai, E.R. Webster and R. Wilson, Eur. J. Med. Chem., 44, 4169 (2009); http://dx.doi.org/10.1016/j.ejmech.2009.05.009.
  28. W.S. Abdel-Aal, H.Y. Hassan, T. Aboul-Fadl and A.F. Youssef, Eur. J. Med. Chem., 45, 1098 (2010); http://dx.doi.org/10.1016/j.ejmech.2009.12.005.
  29. B. Thorat, V. Ahuja, M. Mandewale, R. Yamgar and L.V. Gavali, World J. Pharm. Res., 4, 2250 (2015).