Main Article Content

Abstract

The Baylis-Hillman reaction was greatly accelerated in the presence of Fe3O4 magnetic nanoparticles as an efficient and reusable cocatalyst and 1,8-diazabicyclo[5.4.0]undec-7-ene in a solvent free medium. A preliminary kinetic study revealed that the relative rate of the reaction using Fe3O4 magnetic nanoparticles was considerably faster than that of reaction without Fe3O4 magnetic nanoparticles. In this protocol the use of nanocatalyst provided a green, useful and rapid method to generate the Baylis-Hillman adducts in short reaction times and excellent yields (82-94 %).

Keywords

Baylis-Hillman reaction Rate acceleration Fe3O4 magnetic nanoparticles Solvent free medium 1,8-Diazabicyclo[5.4.0]undec-7-ene

Article Details

How to Cite
Badrian, A. (2017). Dramatic Rate Acceleration of Baylis-Hillman Reaction with Fe3O4 Magnetic Nanoparticles and 1,8-diazabicyclo[5.4.0]undec-7-ene in Solvent Free Medium. Asian Journal of Organic & Medicinal Chemistry, 1(4), 132–137. https://doi.org/10.14233/ajomc.2016.AJOMC-P45

References

  1. D. Basavaiah, A.J. Rao and T. Satyanarayana, Chem. Rev., 103, 811 (2003); https://doi.org/10.1021/cr010043d.
  2. V. Singh and S. Batra, Tetrahedron, 64, 4511 (2008); https://doi.org/10.1016/j.tet.2008.02.087.
  3. D. Basavaiah, N. Kumaragurubaran, D.S. Sharada and R.M. Reddy, Tetrahedron, 57, 8167 (2001); https://doi.org/10.1016/S0040-4020(01)00786-4.
  4. R. Buchholz and H.M.R. Hoffmann, Helv. Chim. Acta, 74, 1213 (1991); https://doi.org/10.1002/hlca.19910740608.
  5. M.G. Nascimento, S.P. Zanotto, S.P. Melegari, L. Fernandes and M.M. Sa, Tetrahedron Asymm., 14, 3111 (2003); https://doi.org/10.1016/j.tetasy.2003.08.015.
  6. W.R. Roush and B.B. Brown, J. Org. Chem., 58, 2151 (1993); https://doi.org/10.1021/jo00060a035.
  7. Y. Iwabuchi, T. Sugihara, T. Esumi and S. Hatakeyama, Tetrahedron Lett., 42, 7867 (2001); https://doi.org/10.1016/S0040-4039(01)01676-8.
  8. Y. Iwabuchi, M. Furukawa, T. Esumi and S. Hatakeyama, J. Chem. Soc. Chem. Commun., 2030 (2001); https://doi.org/10.1039/b106471c.
  9. D. Basavaiah, K.V. Rao and R.J. Reddy, Chem. Soc. Rev., 36, 1581 (2007); https://doi.org/10.1039/b613741p.
  10. D. Basavaiah, P.D. Rao and R.S. Hyma, Tetrahedron, 52, 8001 (1996); https://doi.org/10.1016/0040-4020(96)00154-8.
  11. V.K. Aggarwal, D.K. Dean, A. Mereu and R. Williams, J. Org. Chem., 67, 510 (2002); https://doi.org/10.1021/jo016073y.
  12. V.K. Aggarwal, A. Mereu, G.J. Tarver and R. McCague, J. Org. Chem., 63, 7183 (1998); https://doi.org/10.1021/jo980421n.
  13. Y. Matsuya, K. Hayashi and H. Nemoto, J. Am. Chem. Soc., 125, 646 (2003); https://doi.org/10.1021/ja028312k.
  14. Y.-L. Shi and M. Shi, Tetrahedron, 62, 461 (2006); https://doi.org/10.1016/j.tet.2005.09.058.
  15. J. Cai, Z. Zhou, G. Zhao and C. Tang, Org. Lett., 4, 4723 (2002); https://doi.org/10.1021/ol027197f.
  16. M. Kawamura and S. Kobayashi, Tetrahedron Lett., 40, 1539 (1999); https://doi.org/10.1016/S0040-4039(98)02705-1.
  17. S. Luo, X. Mi, P.G. Wang and J.-P. Cheng, Tetrahedron Lett., 45, 5171 (2004); https://doi.org/10.1016/j.tetlet.2004.04.136.
  18. X. Mi, S. Luo and J.-P. Cheng, J. Org. Chem., 70, 2338 (2005); https://doi.org/10.1021/jo048391d.
  19. P.R. Krishna, E.R. Sekhar and V. Kannan, Synthesis, 857 (2004); https://doi.org/10.1055/s-2004-822320.
  20. K.Y. Lee, S. Gowri Sankar and J.N. Kim, Tetrahedron Lett., 45, 5485 (2004); https://doi.org/10.1016/j.tetlet.2004.05.064.
  21. M. Mamaghani, K. Radmoghadam and A. Badrian, Asian J. Chem., 18, 840 (2006).
  22. V.K. Aggarwal and A. Mereu, Chem. Commun., 2311 (1999); https://doi.org/10.1039/a907754e.
  23. M. Mamaghani and A. Badrian, Tetrahedron Lett., 45, 1547 (2004); https://doi.org/10.1016/j.tetlet.2003.12.046.
  24. M. Mamaghani, M.R. Yazdanbakhsh, A. Badrian, H. Valizadeh and H.A. Samimi, Lett. Org. Chem., 2, 721 (2005); https://doi.org/10.2174/157017805774717607.
  25. M. Mamaghani and A. Badrian, Phosphorus Sulfur Silicon Rel. Elem., 179, 1181 (2004); https://doi.org/10.1080/10426500490459803.
  26. M. Mamaghani and A. Badrian, Phosphorus Sulfur Silicon Rel. Elem., 179, 2429 (2004); https://doi.org/10.1080/10426500490485291.
  27. B. Karami, S.J. Hoseini, K. Eskandari, A. Ghasemi and H. Nasrabadi, Catal. Sci. Technol., 2, 331 (2012); https://doi.org/10.1039/C1CY00289A.
  28. H. Ebrahimzadeh, E. Moazzen, M.M. Amini and O. Sadeghi, Anal. Methods, 4, 3232 (2012); https://doi.org/10.1039/c2ay25407g.
  29. M. Esmaeilpour, A.R. Sardarian and J. Javidi, Appl. Catal. A, 445-446, 359 (2012); https://doi.org/10.1016/j.apcata.2012.09.010.
  30. K.K. Senapati, C. Borgohain and P. Phukan, J. Mol. Catal. Chem., 339, 24 (2011); https://doi.org/10.1016/j.molcata.2011.02.007.
  31. A. Hu, G.T. Yee and W. Lin, J. Am. Chem. Soc., 127, 12486 (2005); https://doi.org/10.1021/ja053881o.
  32. D. Habibi, S. Kaamyabi and H. Hazarkhani, Chin. J. Catal., 36, 362 (2015); https://doi.org/10.1016/S1872-2067(14)60238-2.