Main Article Content
Abstract
Carbogenic carbon nanodots containing curcuminoids and 6-gingerol layers with bulk of resonating non bonded electrons were synthesized using simple and green hydrothermal method from natural herb ginger. As synthesized carobon nanodots were characterized using UV-visible and photoluminescence spectroscopy, IR, DLS and TEM analysis. The antioxidant, catalytic reducing and anticancer properties of carobon dots were studied using ex vivo KMnO4 reduction assay, catalytic 4-nitrophenol reduction test and in vitro MTT assay on MCF- 7 cell line, respectively. These carbogenic carbon nanoparticles shown quantum particle size of 4 nm. The green synthesized carbon dots shown excellent in vitro biological antioxidant and anticancer properties along with reducing nature. This study exhibited the novelty of these green synthesized bioactive carbon nanodots for tagging and coating of bioactive materials for drug vectorization, biodetection, biocompatible cell targeting and biological applications.
Keywords
Article Details
References
- M.J. Krysmann, A. Kelarakis, P. Dallas and E.P. Giannelis, J. Am. Chem. Soc., 134, 747 (2012); https://doi.org/10.1021/ja204661r.
- Y. Song, S. Zhu, S. Xiang, X. Zhao, J. Zhang, H. Zhang, Y. Fu and B. Yang, Nanoscale, 6, 4676 (2014); https://doi.org/10.1039/c4nr00029c.
- D. Ding, C.C. Goh, G. Feng, Z. Zhao, J. Liu, R. Liu, N. Tomczak, J. Geng, B.Z. Tang, L.G. Ng and B. Liu, Adv. Mater., 25, 6083 (2013); https://doi.org/10.1002/adma.201301938.
- T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan and X. Weng, Nanoscale, 5, 8015 (2013); https://doi.org/10.1039/c3nr02014b.
- Y. Sun, W. Cao, S. Li, S. Jin, K. Hu, L. Hu, Y. Huang, X. Gao, Y. Wu and X.J. Liang, Sci. Rep., 3, 3036 (2013).
- C. Wu and D.T. Chiu, Angew. Chem. Int. Ed., 52, 3086 (2013); https://doi.org/10.1002/anie.201205133.
- S. Zhu, J. Zhang, Y. Song, G. Zhang, H. Zhang and B. Yang, Acta Chim. Sin., 70, 2311 (2012); https://doi.org/10.6023/A12090690.
- M. Sun, C.Y. Hong and C.Y. Pan, J. Am. Chem. Soc., 134, 20581 (2012); https://doi.org/10.1021/ja310236m.
- Q. Zhu, F. Qiu, B. Zhu and X. Zhu, RSC Adv., 3, 2071 (2013); https://doi.org/10.1039/C2RA22210H.
- Y. Hong, J.W. Lam and B.Z. Tang, Chem. Commun., 4332 (2009); https://doi.org/10.1039/b904665h.
- Y. Hong, J.W. Lam and B.Z. Tang, Chem. Soc. Rev., 40, 5361 (2011); https://doi.org/10.1039/c1cs15113d.
- P. Mirtchev, E.J. Henderson, N. Soheilnia, C.M. Yip and G.A. Ozin, J. Mater. Chem., 22, 1265 (2012); https://doi.org/10.1039/C1JM14112K.
- V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj and S. Chand, J. Am. Chem. Soc., 133, 9960 (2011); https://doi.org/10.1021/ja2036749.
- X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W.W. Yu and A.L. Rogach, ACS Nano, 7, 11234 (2013); https://doi.org/10.1021/nn405017q.
- J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, New J. Chem., 36, 97 (2012); https://doi.org/10.1039/C1NJ20658C.
- W.-W. Liu, Y.-Q. Feng, X.-B. Yan, J.-T. Chen and Q.-J. Xue, Adv. Funct. Mater., 23, 4111 (2013); https://doi.org/10.1002/adfm.201203771.
- J. Shen, Y. Zhu, X. Yang and C. Li, Chem. Commun., 48, 3686 (2012); https://doi.org/10.1039/c2cc00110a.
- Z. Zhang, J. Zhang, N. Chen and L. Qu, Energy Environ. Sci., 5, 8869 (2012); https://doi.org/10.1039/c2ee22982j.
- L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.J. Zhu, Nanoscale, 5, 4015 (2013); https://doi.org/10.1039/c3nr33849e.
- M. Bacon, S.J. Bradley and T. Nann, Part. Part. Syst. Charact., 31, 415 (2014); https://doi.org/10.1002/ppsc.201300252.
- X. Zhou, S. Guo and J. Zhang, ChemPhysChem, 14, 2627 (2013); https://doi.org/10.1002/cphc.201300111.
- L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang and X. Chen, Trends Analyt. Chem., 54, 83 (2014); https://doi.org/10.1016/j.trac.2013.11.001.
References
M.J. Krysmann, A. Kelarakis, P. Dallas and E.P. Giannelis, J. Am. Chem. Soc., 134, 747 (2012); https://doi.org/10.1021/ja204661r.
Y. Song, S. Zhu, S. Xiang, X. Zhao, J. Zhang, H. Zhang, Y. Fu and B. Yang, Nanoscale, 6, 4676 (2014); https://doi.org/10.1039/c4nr00029c.
D. Ding, C.C. Goh, G. Feng, Z. Zhao, J. Liu, R. Liu, N. Tomczak, J. Geng, B.Z. Tang, L.G. Ng and B. Liu, Adv. Mater., 25, 6083 (2013); https://doi.org/10.1002/adma.201301938.
T. Lai, E. Zheng, L. Chen, X. Wang, L. Kong, C. You, Y. Ruan and X. Weng, Nanoscale, 5, 8015 (2013); https://doi.org/10.1039/c3nr02014b.
Y. Sun, W. Cao, S. Li, S. Jin, K. Hu, L. Hu, Y. Huang, X. Gao, Y. Wu and X.J. Liang, Sci. Rep., 3, 3036 (2013).
C. Wu and D.T. Chiu, Angew. Chem. Int. Ed., 52, 3086 (2013); https://doi.org/10.1002/anie.201205133.
S. Zhu, J. Zhang, Y. Song, G. Zhang, H. Zhang and B. Yang, Acta Chim. Sin., 70, 2311 (2012); https://doi.org/10.6023/A12090690.
M. Sun, C.Y. Hong and C.Y. Pan, J. Am. Chem. Soc., 134, 20581 (2012); https://doi.org/10.1021/ja310236m.
Q. Zhu, F. Qiu, B. Zhu and X. Zhu, RSC Adv., 3, 2071 (2013); https://doi.org/10.1039/C2RA22210H.
Y. Hong, J.W. Lam and B.Z. Tang, Chem. Commun., 4332 (2009); https://doi.org/10.1039/b904665h.
Y. Hong, J.W. Lam and B.Z. Tang, Chem. Soc. Rev., 40, 5361 (2011); https://doi.org/10.1039/c1cs15113d.
P. Mirtchev, E.J. Henderson, N. Soheilnia, C.M. Yip and G.A. Ozin, J. Mater. Chem., 22, 1265 (2012); https://doi.org/10.1039/C1JM14112K.
V. Gupta, N. Chaudhary, R. Srivastava, G.D. Sharma, R. Bhardwaj and S. Chand, J. Am. Chem. Soc., 133, 9960 (2011); https://doi.org/10.1021/ja2036749.
X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S.V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W.W. Yu and A.L. Rogach, ACS Nano, 7, 11234 (2013); https://doi.org/10.1021/nn405017q.
J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, New J. Chem., 36, 97 (2012); https://doi.org/10.1039/C1NJ20658C.
W.-W. Liu, Y.-Q. Feng, X.-B. Yan, J.-T. Chen and Q.-J. Xue, Adv. Funct. Mater., 23, 4111 (2013); https://doi.org/10.1002/adfm.201203771.
J. Shen, Y. Zhu, X. Yang and C. Li, Chem. Commun., 48, 3686 (2012); https://doi.org/10.1039/c2cc00110a.
Z. Zhang, J. Zhang, N. Chen and L. Qu, Energy Environ. Sci., 5, 8869 (2012); https://doi.org/10.1039/c2ee22982j.
L. Li, G. Wu, G. Yang, J. Peng, J. Zhao and J.J. Zhu, Nanoscale, 5, 4015 (2013); https://doi.org/10.1039/c3nr33849e.
M. Bacon, S.J. Bradley and T. Nann, Part. Part. Syst. Charact., 31, 415 (2014); https://doi.org/10.1002/ppsc.201300252.
X. Zhou, S. Guo and J. Zhang, ChemPhysChem, 14, 2627 (2013); https://doi.org/10.1002/cphc.201300111.
L. Lin, M. Rong, F. Luo, D. Chen, Y. Wang and X. Chen, Trends Analyt. Chem., 54, 83 (2014); https://doi.org/10.1016/j.trac.2013.11.001.