Main Article Content

Abstract

Nicotine-based task specific ionic liquid has been used as a carrier of boron hydride instead of pyridine borane and other related reagents. Borohydride complex of nicotine-ionic liquid (IL) has been used for reductive amination of variety of carbonyls and amines with encouraging results. The reactions were conducted under pyridine free odourless conditions. The improved results were obtained in terms of enhanced yields, with minimal work up.

Keywords

Nictone-based ionic liquid Pyridine-borane complex Reductive amination Green recyclable procedure

Article Details

How to Cite
Ali Hullio, A., & Imran Afridi, H. (2017). Nicotine-Borane Based Task Specific Ionic Liquid as a Reagent for Efficient Reductive Amination. Asian Journal of Organic & Medicinal Chemistry, 2(1), 53–57. https://doi.org/10.14233/ajomc.2017.AJOMC-P67

References

  1. S.H. Bauer, Chem. Rev., 31, 43 (1942); https://doi.org/10.1021/cr60098a002.
  2. N.M. Yoon, C.S. Pak, S. Krishnamurthy, T.P. Stocky and H.C. Brown, J. Org. Chem., 38, 2786 (1973); https://doi.org/10.1021/jo00956a011.
  3. H. Jockel and R. Schmidt, J. Chem. Soc. Perkin Trans. II, 2719 (1997); https://doi.org/10.1039/a703698a.
  4. J.C. Amedio, P.J. Bernard, M. Fountain and G.V. Wagenen, Synth. Commun., 29, 2377 (1999); https://doi.org/10.1080/00397919908086243.
  5. R.O. Hutchins, K. Learn, B. Nazer, D. Pytlewski and A. Pelter, Org. Prep. Proced. Int., 16, 335 (1984); https://doi.org/10.1080/00304948409457891.
  6. B. Carboni and L. Monnier, Tetrahedron, 55, 1197 (1999); https://doi.org/10.1016/S0040-4020(98)01103-X.
  7. A. Volkov, F. Tinnis, T. Slagbrand, P. Trilloa and H. Adolfsson, Chem. Soc. Rev., 45, 6685 (2016); https://doi.org/10.1039/C6CS00244G.
  8. A. Pelter, R.M. Rosser and S. Mills, J. Chem. Soc., Perkin Trans. 1, 4, 717 (1984); https://doi.org/10.1039/P19840000717.
  9. (a) P.G.M. Wuts, J.E. Cabaj and J.L. Havens, J. Org. Chem., 59, 6470 (1994); https://doi.org/10.1021/jo00100a061. (b) T. Sakamoto, H. Li and Y. Kikugawa, J. Org. Chem., 61, 8496 (1996); https://doi.org/10.1021/jo961458f.
  10. R.P. Tripathi, S.S. Verma, J. Pandey and V.K. Tiwari, Curr. Org. Chem., 12, 1093 (2008); https://doi.org/10.2174/138527208785740283.
  11. A.E. Moormann, Synth. Commun., 23, 789 (1993); https://doi.org/10.1080/00397919308009840.
  12. M.D. Bomann, I.C. Guch and M. DiMare, J. Org. Chem., 60, 5995 (1995); https://doi.org/10.1021/jo00123a049.
  13. S. Sato, T. Sakamoto, E. Miyazawa and Y. Kikugawa, Tetrahedron, 60, 7899 (2004); https://doi.org/10.1016/j.tet.2004.06.045.
  14. A.A. Hullio and G.M. Mastoi, Oriental J. Chem., 27, 1591 (2011).
  15. A.A. Hullio and G.M. Mastoi, Asian J. Chem., 23, 5411 (2011).
  16. A.A. Hullio and G.M. Mastoi, Chin. J. Chem., 30, 1647 (2012); https://doi.org/10.1002/cjoc.201280028.
  17. A.A. Hullio and G.M. Mastoi, Iranian J. Catal., 1, 79 (2011).
  18. E. Ennis and S. Handy, Curr. Org. Synth., 4, 381 (2007); https://doi.org/10.2174/157017907782408824.
  19. AA. Hullio and G.M. Mastoi, Jordan J. Chem, 7, 125 (2012).
  20. S.T. Handy, M. Okello and G. Dickenson, Org. Lett., 5, 2513 (2003); https://doi.org/10.1021/ol034778b.
  21. M. Shibagaki, H. Matsushta and H. Kaneko, Heterocycles, 20, 497 (1983); https://doi.org/10.3987/R-1983-03-0497.