Main Article Content

Abstract

A simple, fast and accurate spectrophotometric method for determination of melatonin drug in its pure and dosage forms was developed using potassium ferricyanide–Fe(III) detection system. This method was based on the reduction of Fe(III) to Fe(II) by melatonin, then in situ formed Fe(II) reacted with potassium ferricyanide (K3[FeIII(CN)6]) to form the soluble prussian blue product, KFeIII[FeII(CN)6]. The absorbance of the soluble prussian blue was measured at λmax of 705 nm. The optimum conditions for this method were studied accurately. The absorbance was found to be linear to melatonin concentration in the range of 1.60-32.00 μg mL-1. The different analytical parameters were discussed. The method has been successfully applied to determine melatonin drug in its pharmaceutical forms and the results obtained were in a good accord with results obtained by the official one as indicated by the percent recovery values.

Keywords

Spectrophotometry Melatonin Potassium ferricyanide Soluble prussian blue

Article Details

How to Cite
El-Badry Mohamed, M., M. Hamed, M., G. Zaki, N., M. Abdou, M., G. Mohamed, G., & M. Abdallah, A. (2017). Spectrophotometric Determination of Melatonin Drug in its Pure and Dosage Forms Using Potassium Ferricyanide-Fe(III) System. Asian Journal of Organic & Medicinal Chemistry, 2(1), 37–41. https://doi.org/10.14233/ajomc.2017.AJOMC-P64

References

  1. F.A.M. Al-Omary, in eds.: H.G. Brittain, Melatonin: Comprehensive Profile, In: Profiles of Drug Substances, Excipients and Related Methodology, Academic Press, San Diego, pp. 159-226 (2013).
  2. T. Harumi and S. Matsushima, J. Chromatogr. B Biomed. Sci. Appl., 747, 95 (2000); https://doi.org/10.1016/S0378-4347(00)00064-5.
  3. A. Mostad, C. Rømming, I. Palmertz, O. Westbye, C. Guthenberg and B. Mannervik, Acta Chem. Scand. B, 28, 564 (1974); https://doi.org/10.3891/acta.chem.scand.28b-0564.
  4. A.B. Lerner, J.D. Case and R.V. Heinzelman, J. Am. Chem. Soc., 81, 6084 (1959); https://doi.org/10.1021/ja01531a060.
  5. E.Ö. Cetin, Y. Uyanikgil, M. Turgut and M. Baka, in eds.: V. Srinivasan, G. Gobbi, S.D. Shillcutt and S. Suzen, Melatonin Production and Bioavailability, In: Melatonin Therapeutic Value and Neuroprotection, CRC Press, Boca Raton, pp. 1-9 (2014).
  6. J. Han, Y. Xu, C.-X. Yu, J. Shen and Y.-M. Wei, Eur. J. Pharmacol., 594, 125 (2008); https://doi.org/10.1016/j.ejphar.2008.07.049.
  7. R. Sircar, Brain Res., 857, 295 (2000); https://doi.org/10.1016/S0006-8993(99)02460-9.
  8. S.M. Hill, V.P. Belancio, R.T. Dauchy, S. Xiang, S. Brimer, L. Mao, A. Hauch, P.W. Lundberg, W. Summers, L. Yuan, T. Frasch and D.E. Blask, Endocr. Relat. Cancer, 22, R183 (2015); https://doi.org/10.1530/ERC-15-0030.
  9. M.J. Paik, D.T. Nguyen, Y.J. Kim, J.Y. Shin, W. Shim, E.Y. Cho, J.H. Yoon, K.R. Kim, Y.S. Lee, N. Kim, S.W. Park, G. Lee and Y.H. Ahn, Chromatographia, 72, 1213 (2010); https://doi.org/10.1365/s10337-010-1771-y.
  10. T. Padumanonda, J. Johns, A. Sangkasat and S. Tiyaworanant, DARU J. Pharm. Sci., 22, 6 (2014); https://doi.org/10.1186/2008-2231-22-6.
  11. T. Kocadagli, C. Yilmaz and V. Gökmen, Food Chem., 153, 151 (2014); https://doi.org/10.1016/j.foodchem.2013.12.036.
  12. A. Welp, B. Manz and E. Peschke, J. Immunol. Methods, 358, 1 (2010); https://doi.org/10.1016/j.jim.2010.03.018.
  13. B. Devadas, R. Madhu, S.-M. Chen, V. Veeramani and M. Rajkumar, Sci. Adv. Mater., 7, 654 (2015); https://doi.org/10.1166/sam.2015.2148.
  14. H. Bagheri, A. Afkhami, P. Hashemi and M. Ghanei, RSC Adv., 5, 21659 (2015); https://doi.org/10.1039/C4RA16802J.
  15. E. Molaakbari, A. Mostafavi and H. Beitollahi, Sens. Actuators B Chem., 208, 195 (2015); https://doi.org/10.1016/j.snb.2014.10.130.
  16. A. Babaei, A.R. Taheri and I.K. Farahani, Sens. Actuators B Chem., 183, 265 (2013); https://doi.org/10.1016/j.snb.2013.03.101.
  17. M.D. Maldonado, H. Moreno and J.C. Calvo, Clin. Nutr., 28, 188 (2009); https://doi.org/10.1016/j.clnu.2009.02.001.
  18. T. Venkatachalam and K.G. Lalitha, Pharmacophore, 5, 252 (2014).
  19. E. Oladi, M. Mohamadi, T. Shamspur and A. Mostafavi, Spectrochim. Acta A, 132, 326 (2014); https://doi.org/10.1016/j.saa.2014.05.010.
  20. H.W. Darwish, M.I. Attia and D.P. Zlotos, Chem. Cent. J., 6, 412 (2012); https://doi.org/10.1186/1752-153X-6-36.
  21. J. Cordonnier and J. Schaep, in eds.: A.C. Moffat, M.D. Osselton and B. Widdop, Ultraviolet, Visible and Fluorescence Spectrophotometry, In: Clarke’s Analysis of Drugs and Poisons, Pharmaceutical Press, London, pp. 507-520 (2011).
  22. United States Pharmacopeial Convention, 37th Revision of the United States Pharmacopeia (USP 37) and 32nd edition of the National Formulary (NF 32), USA, pp. 5484-5485 (2014).
  23. S. de Oliveira Silva, V.F. Ximenes, L.H. Catalani and A. Campa, Biochem. Biophys. Res. Commun., 279, 657 (2000); https://doi.org/10.1006/bbrc.2000.3993.
  24. L. Guo, Y. Zhang and Q. Li, Spectrochim. Acta A, 74, 307 (2009); https://doi.org/10.1016/j.saa.2009.06.012.
  25. P. Job, Ann. Chim., 9, 113 (1928).
  26. W.C. Vosburgh and G.R. Cooper, J. Am. Chem. Soc., 63, 437 (1941); https://doi.org/10.1021/ja01847a025.
  27. J. Ermer and J.H.M.B. Miller, Method Validation in Pharmaceutical Analysis: A Guide to Best Practice, Wiley-VCH, Federal Republic of Germany (2005).
  28. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch, Fundamentals of Analytical Chemistry, Brooks/Cole, USA, edn 9 (2014).