Main Article Content

Abstract

In present study, different assays have been used to evaluate antioxidant potential of various extracts of K. daigremontiana leaves prepared in different solvents and compared with their phenolic and flavonoid contents. The results of various antioxidant assays suggest that the butanol extract exhibits highest antioxidant potential as compared to other solvents (ethanol, dichloromethane, hexane and water). Results of ABTS•+ radical decolourization activity show that butanol extract of K. daigremontiana leaves exhibited strong activity with IC50 value 8.43 μg mL-1. As for lipid peroxidation inhibition studies again butanol extract exhibits highest potential (IC50, 0.97 μg mL-1) which is better than one of the standards gallic acid (IC50, 2.20 μg mL-1) and comparable to n-propyl gallate (IC50, 0.40 μg mL-1) and Trolox (IC50, 0.10 μg mL-1). Same fraction possessed maximum total phenolic contents (72 mg/100 g dry weight), while highest total flavonoid contents are observed in case of dichloromethane extract.

Keywords

Antioxidant potential Lipid peroxidation K. daigremontiana

Article Details

How to Cite
Shujaat, S., Chaudhary, S., & Sherin, L. (2017). Comparison of Antioxidant Potential, Total Flavonoid and Phenolic Contents of Different Extracts of Kalanchoe daigremontiana Leaves. Asian Journal of Organic & Medicinal Chemistry, 2(1), 5–8. https://doi.org/10.14233/ajomc.2017.AJOMC-P51

References

  1. K. Bagehi and S. Puri, East. Mediterr. Health J., 4, 350 (1998).
  2. D. Gems and L. Partridge, Cell Metab., 7, 200 (2008); https://doi.org/10.1016/j.cmet.2008.01.001.
  3. B. Halliwell and J.M.C. Gutteridge, Biochem. J., 219, 1 (1984); https://doi.org/10.1042/bj2190001.
  4. P.A. Cox and M.J. Balick, Sci. Am., 270, 82 (1994); https://doi.org/10.1038/scientificamerican0694-82.
  5. G.H. Naik, K.I. Priyadarsini and H. Mohan, Curr. Sci., 90, 1100 (2006).
  6. K. Wolfe, X. Wu and R.H. Liu, J. Agric. Food Chem., 51, 609 (2003); https://doi.org/10.1021/jf020782a.
  7. H.C. Chang, G.J. Huang, D.C. Agrawal, C.L. Kuo, C.R. Wu and H.S. Tsay, Bot. Stud. (Taipei, Taiwan), 48, 397 (2007).
  8. R. Parshad, N.K. Sanford, F.M. Price, V.E. Steele, R.E. Tarone, G.J. Kelloff and C.W. Boone, Anticancer Res., 18(5A), 3263 (1998).
  9. J.T. Baldwin, Am. J. Bot., 25, 572 (1938); https://doi.org/10.2307/2436516.
  10. P. S. Steyn and F. R. van Heerden, Nat. Prod. Rep., 15, 397 (1998); https://doi.org/10.1039/a815397y.
  11. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. Rice-Evans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3.
  12. R.J. Robbins, J. Agric. Food Chem., 51, 2866 (2003); https://doi.org/10.1021/jf026182t.
  13. B. Halliwell and J.M.C. Guttridge, Free Radicals in Biology and Medicine, Clarendon, London, edn 2, p. 125 (1989).
  14. M.S. Blois, Nature, 181, 1199 (1958); https://doi.org/10.1038/1811199a0.
  15. S. Cliffe, M.S. Fawer, G. Maier, K. Takata and G. Ritter, J. Agric. Food Chem., 42, 1824 (1994); https://doi.org/10.1021/jf00044a048.
  16. V. Dewanto, X. Wu, K.K. Adom and R.H. Liu, J. Agric. Food Chem., 50, 3010 (2002); https://doi.org/10.1021/jf0115589.
  17. H. Ohkawa, N. Ohishi and K. Yagi, Anal. Biochem., 95, 351 (1979); https://doi.org/10.1016/0003-2697(79)90738-3.
  18. P. Prieto, M. Pineda and M. Aguilar, Anal. Biochem., 269, 337 (1999); https://doi.org/10.1006/abio.1999.4019.
  19. C.A. Hall and S.L. Cuppett, Activities of Natural Antioxidants in Anti-oxidant Methodology in vivo and in vitro Concepts, AOCS Press, USA, vol. 2 (1997).
  20. L. Sherin, M. Mustafa and S. Shujaat, Asian J. Chem., 27, 4527 (2015); https://doi.org/10.14233/ajchem.2015.19208.