Main Article Content

Abstract

Medium effects on the kinetics of the morpholine-catalyzed solvolysis of azlactone and its derivatives e.g., p-chloro and p-methoxy have been investigated within the temperature range (40-65 °C) in ethanolwater mixtures of varying ethanol compositions from 30 to 80 % by volume of the organic solvent component. The order of decreasing reactivity of p-substituted azlactones reaction in the ethanol-water mixtures is in the order p-Cl > p-H >p-OMe. The variation of activation parameters (ΔG*, ΔH* and ΔS*) with the mole fraction of the ethanol was analyzed and discussed. The rates of the amine catalyzed reaction were found to increase with an increase of the dielectric constant. The isokinetic plots were linear in all media and revealed the existence of compensation effect due to strong solutesolvent interactions. Moreover, the correlation of log kobs with the reciprocal of temperature was linear and a good linear relationship was obtained from plots of log kobs versus the σ-Hammett parameter with a positive slope (ρ). The Hammett substituent’s σ for the various substituents in the benzylidene moiety gave good straight lines with values varying between 1.843 to 2.140.

Keywords

Ring-opening Azlactones Kinetics Solvent effect

Article Details

How to Cite
N. Al-Harthi, M., A. Al Juhaiman, L., & M. Ismail, A. (2017). Medium Effects on Ring-Opening Reaction of Some para-Substituted Azlactones in Ethanol-Water Mixtures. Asian Journal of Organic & Medicinal Chemistry, 2(1), 1–4. https://doi.org/10.14233/ajomc.2017.AJOMC-P50

References

  1. G. Ozturk, S. Alp and K. Ertekin, Dyes Pigments, 72, 150 (2007); https://doi.org/10.1016/j.dyepig.2005.08.012.
  2. P. Mamtha and Ch.D. Sarala, J. Chem. Pharm. Res., 4, 2767 (2012).
  3. K. Ertekin, S.Alp, C. Karapire, B. Yenigül, E. Henden and S. Içli, J. Photochem. Photobiol. A: Chem., 137, 155 (2000); https://doi.org/10.1016/S1010-6030(00)00358-0.
  4. L.N. Sharada, Y. Aparna and M. Saba, Int. J. Sci. Res. Publ., 5, 1 (2015).
  5. M.R.P. Heravi, J. Univ. Chem. Technol. Metall., 44, 1 (2009).
  6. K. Takenaka and T. Tsuji, J. Heterocycl. Chem., 33, 1367 (1996); https://doi.org/10.1002/jhet.5570330459.
  7. C. Daniel, N.A. Sartory, N. Zahn, R. Schmidt, G. Geisslinger, H.H. Radeke and J.M. Stein, Mol. Immunol., 44, 3305 (2007); https://doi.org/10.1016/j.molimm.2007.02.026.
  8. A.M. Ismail, Indian J. Chem., 47B, 49 (2008).
  9. A.M. Ismail, Indian J. Chem., 46B, 916 (2007).
  10. A.M. Ismail and S.K. El-Sadany, Prog. React. Kinet. Mech., 33, 207 (2008); https://doi.org/10.3184/146867808X315715.
  11. A.M. Ismail and S.K. El-Sadany, Prog. React. Kinet. Mech., 34, 227 (2009); https://doi.org/10.3184/146867809X466203.
  12. N.A. Al-Jallal and A.M. Ismail, J. Solution Chem., 41, 2154 (2012); https://doi.org/10.1007/s10953-012-9932-2.
  13. N.A. Al-Jallal and A.M. Ismail, Asian J. Chem., 23, 3811 (2011).
  14. S. Kunsági-Máté, A. Kumar, P. Sharma, L. Kollár and M.P. Nikfardjam, J. Phys. Chem., B113, 7468 (2009); https://doi.org/10.1021/jp811040g.
  15. A. El-Mekabaty, J. Inter. Mod. Org. Chem., 2, 40 (2013).
  16. E.V. Anslynand and D.A. Doughetry, Modern Physical Organic Chemistry, University Science Books Sausaltio, Califorrnia (2004).
  17. A.F.M. Fahmy, ARKIVOC, 309 (2006); https://doi.org/10.3998/ark.5550190.0007.729.
  18. G. Akerlof, J. Am. Soc., 54, 4125 (1932); https://doi.org/10.1021/ja01350a001.
  19. A.M. Zaichikov, J. Struct. Chem., 47(S1), S73 (2006); https://doi.org/10.1007/s10947-006-0380-y.