Main Article Content

Abstract

A convenient, novel synthesis of (E)-gem-dimetalloakenes containing boron and tin based on Z-1-bromo-1-alkenylboronate esters is developed. α-Bromo-(Z)-1-alkenylboronate esters readily available from literature procedures smoothly undergo a reaction with freshly generated trimethylstannyllithium in hexamethylphosphoramide (HMPA) from reacting hexamethylditin with methyllithium at -78 °C to provide the corresponding tetracoordinated boron complexes. These boron complexes undergo intramolecular nucleophilic substitution reaction to provide the corresponding (E)-1-alkenylboronate esters containing trimethylstannyl moiety. These intermediates are isolated in good yields (70-82 %) and are characterized by the spectral data (1H NMR and 13C NMR). Upon oxidation with hydrogen peroxide and sodium hydroxide followed by acidification the corresponding carboxylic acids are obtained in good yields (72-85 %).

Keywords

gem-Dimetalloalkanes Trimethylstannyllithium Hexamethylditin Alkenylboronate Methyllithium

Article Details

How to Cite
G. Bhat, N., & A. Lakhiani, R. (2017). Novel Synthesis of (E)-gem-Dimetalloalkenes Containing Boron and Tin and Their Conversion into Carboxylic Acids. Asian Journal of Organic & Medicinal Chemistry, 2(2), 78–80. https://doi.org/10.14233/ajomc.2017.AJOMC-P40

References

  1. N.G. Bhat, A. Tamm and A. Gorena, Synlett, 297 (2004); https://doi.org/10.1055/s-2004-815399.
  2. H.C. Brown, N.G. Bhat and V. Somayaji, Organometallics, 2, 1311 (1983); https://doi.org/10.1021/om50004a008.
  3. D.S. Matteson and D. Majumdar, Organometallics, 2, 1529 (1983); https://doi.org/10.1021/om50005a008.
  4. D.J. Tsai, P.K. Jesthi and D.S. Matteson, Organometallics, 2, 1543 (1983); https://doi.org/10.1021/om50005a010.
  5. H.C. Brown, N.R. De Lue, Y. Yamamoto, K. Maruyama, T. Kasahara, S. Murahashi and A. Sonoda, J. Org. Chem., 42, 4088 (1977); https://doi.org/10.1021/jo00445a022.
  6. M.W. Rathke, E. Chao and G. Wu, J. Organomet. Chem., 122, 145 (1976); https://doi.org/10.1016/S0022-328X(00)80606-3.
  7. H.C. Brown, T. Imai, Organometallics, 3, 1392 (1984); https://doi.org/10.1021/om00087a013.
  8. H.C. Brown, T. Imai and N.G. Bhat, J. Org. Chem., 51, 5277 (1986); https://doi.org/10.1021/jo00376a042.
  9. H.C. Brown and R. Soundararajan, Tetrahedron Lett., 35, 6963 (1994); https://doi.org/10.1016/0040-4039(94)88199-5.
  10. N.G. Bhat, C. Martinez and J. De Los Santos, Tetrahedron Lett., 41, 6541 (2000); https://doi.org/10.1016/S0040-4039(00)01088-1.
  11. W.C. Still, J. Org. Chem., 41, 3063 (1976); https://doi.org/10.1021/jo00880a044.
  12. J.D. Roberts, D.E. Dorman and M. Jautelat, J. Org. Chem., 36, 2757 (1971); https://doi.org/10.1021/jo00818a007.
  13. B. Wrackmeyer, O.L. Tok, E. Klimkina and Y.N. Bubnov, Inorg. Chim. Acta, 300-302, 169 (2000); https://doi.org/10.1016/S0020-1693(99)00551-4.