Main Article Content

Abstract

Polyethylene glycol (PEG-400) has been discovered to be an effective eco-friendly solvent cum activator for the one-pot cyclization of 2-aminobenzoic acid and arylaldehyde. This method displays facile access to a diverse range of substituted aryl 4H-3,1-benzoxazin-4- onesThe reaction was performed under mild conditions and the generality of the one-pot reaction was investigated.

Keywords

Oxidative cascade cyclization 2-Aminobenzoic acid Arylaldehyde Polyethylene glycol Catalyst-free conditions

Article Details

How to Cite
Veeranna, D. (2017). Synthesis of Aryl 4H-3,1-benzoxazin-4-ones from 2-Aminobenzoic Acid and Arylaldehydes Using PEG-400 as an Efficient and Recyclable Reaction Medium. Asian Journal of Organic & Medicinal Chemistry, 2(2), 87–90. https://doi.org/10.14233/ajomc.2017.AJOMC-P69

References

  1. (a) G. Kamalakar, K. Komura and Y. Sugi, Ind. Eng. Chem. Res., 45, 6118 (2006); https://doi.org/10.1021/ie060440k. (b) H. Weingärtner and E.U. Franck, Angew. Chem. Int. Ed., 44, 2672 (2005); https://doi.org/10.1002/anie.200462468. (c) R. Sheldon, Chem. Commun., 2399 (2001); https://doi.org/10.1039/b107270f. (d) H. Zhao, Y. Zhang and Z. Yuan, Aldrichim Acta, 454, 75 (2002); https://doi.org/10.1016/S0003-2670(01)01543-4. (e) P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3772 (2000); https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5. (f) T. Welton, Chem. Rev., 99, 2071 (1999); https://doi.org/10.1021/cr980032t.
  2. (a) T.J. Dickerson, N.N. Reed and K.D. Janda, Chem. Rev., 102, 3325 (2002); https://doi.org/10.1021/cr010335e. (b) A. Kamal, D.R. Reddy and Rajendar, Tetrahedron Lett., 46, 7951 (2005); https://doi.org/10.1016/j.tetlet.2005.09.082. (c) N. Suryakiran, T.S. Reddy, K. Ashalatha, M. Lakshman and Y. Venkateswarlu, Tetrahedron Lett., 47, 3853 (2006); https://doi.org/10.1016/j.tetlet.2006.03.181.
  3. (a) R.L. Jarvest, M.J. Parratt, C.M. Debouck, J.G. Gorniak, L.J. Jennings, H.T. Serafinowska and J.E. Strickler, Bioorg. Med. Chem. Lett., 6, 2463 (1996); https://doi.org/10.1016/0960-894X(96)00455-6. (b) A. Krantz, R.W. Spencer, T.F. Tam, T.J. Liak, L.J. Copp, E.M. Thomas and S.P. Rafferty, J. Med. Chem., 33, 464 (1990); https://doi.org/10.1021/jm00164a002. (c) L. Hedstrom, A.R. Moorman, J. Dobbs and R.H. Abeles, Biochemistry, 23, 1753 (1984); https://doi.org/10.1021/bi00303a026. (d) M. Gutschow and U. Neumann, Bioorg. Med. Chem., 5, 1935 (1997); https://doi.org/10.1016/S0968-0896(97)00128-4.
  4. (a) J.R. Beck and J.A. Yahner, J. Org. Chem., 38, 2450 (1973); https://doi.org/10.1021/jo00954a008. (b) D.T. Zentmyer and E.C. Wagner, J. Org. Chem., 14, 967 (1949); https://doi.org/10.1021/jo01158a006. (c) E. P. Papadopoulos and C. D. Torres, Heterocycles, 19, 1039 (1982); https://doi.org/10.3987/R-1982-06-1039. (d) J. Clayden, L. Vallverdú and M. Helliwell, Org. Biomol. Chem., 4, 2106 (2006); https://doi.org/10.1039/B602912D. (e) M.K. Nayak, B.H. Kim, J.E. Kwon, S. Park, J. Seo, J.W. Chung and S.Y. Park, Chem. Eur. J., 16, 7437 (2010); https://doi.org/10.1002/chem.200902615. (f) E. Manivannan and S.C. Chaturvedi, Bioorg. Med. Chem., 19, 4520 (2011); https://doi.org/10.1016/j.bmc.2011.06.019. (g) M. Shariat and S. Abdollahi, Molecules, 9, 705 (2004); https://doi.org/10.3390/90800705.
  5. Z.Y. Ge, Q.M. Xu, X.D. Fei, T. Tang, Y.M. Zhu and S.J. Ji, J. Org. Chem., 78, 4524 (2013); https://doi.org/10.1021/jo400515y.
  6. X.L. Lian, H. Lei, X.J. Quan, Z.H. Ren, Y.Y. Wang and Z.H. Guan, Chem. Commun., 49, 8196 (2013); https://doi.org/10.1039/c3cc44215b.
  7. K. Kobayashi, H. Hashimoto, M. Matsumoto and H. Inouchi, Tetrahedron, 70, 6398 (2014); https://doi.org/10.1016/j.tet.2014.07.043.
  8. (a) P. Ács, E. Müller, G. Rangits, T. Lóránd and L. Kollár, Tetrahedron, 62, 12051 (2006); https://doi.org/10.1016/j.tet.2006.09.076. (b) X.F. Wu, J. Schranck, H. Neumann and M. Beller, Chem. Eur. J., 17, 12246 (2011); https://doi.org/10.1002/chem.201102254. (c) X.F. Wu, H. Neumann and M. Beller, Chem. Eur. J., 18, 12599 (2012); https://doi.org/10.1002/chem.201202142. (d) L. Xue, L. Shi, Y. Han, C. Xia, H.V. Huynh and F. Li, Dalton Trans., 40, 7632 (2011); https://doi.org/10.1039/c1dt10433k. (e) R. Giri, J.K. Lam and J.Q.J. Yu, J. Am. Chem. Soc., 132, 686 (2010); https://doi.org/10.1021/ja9077705. (f) C.E. Houlden, M. Hutchby, C.D. Bailey, J.G. Ford, S.N.G. Tyler, M.R. Gagné, G.C. Lloyd-Jones and K.I. Booker-Milburn, Angew. Chem. Int. Ed., 48, 1830 (2009); https://doi.org/10.1002/anie.200805842.
  9. W. Li and X.F. Wu, J. Org. Chem., 79, 10410 (2014); https://doi.org/10.1021/jo5020118.
  10. H. Konishi, H. Nagase and K. Manabe, Chem. Commun., 51, 1854 (2015); https://doi.org/10.1039/C4CC09413A.
  11. S.V. Hansen and T. Ulven, Org. Lett., 17, 2832 (2015); https://doi.org/10.1021/acs.orglett.5b01252.
  12. S. Sathishkumar, S. Mahasampathgowri, K.K. Balasubramanian and R. Saiganesh, Tetrahedron Lett., 56, 4031 (2015); https://doi.org/10.1016/j.tetlet.2015.05.015.
  13. Z.H. Zhang, L. Yin, Y.M. Wang, J.Y. Liu and Y. Li, Green Chem., 6, 563 (2004); https://doi.org/10.1039/b410583d.
  14. L. Nagarapu, R. Mallepalli, U. Nikhil Kumar, P. Venkateswarlu, R. Bantu and L. Yeramanchi, Tetrahedron Lett., 53, 1699 (2012); https://doi.org/10.1016/j.tetlet.2012.01.045.
  15. B.S. Reddy, A. Naidu and P.K. Dubey, Green Chem. Lett. Rev., 6, 254 (2013); https://doi.org/10.1080/17518253.2012.742142.
  16. S. Munusamy, V.P. Muralidharan and S.K. Iyer, Tetrahedron Lett., 58, 520 (2017); https://doi.org/10.1016/j.tetlet.2016.12.072