Main Article Content

Abstract

In this work, five varieties of o-vanillin Schiff bases viz. 2-methoxy- 6-(3/5/6/8-iminoquinolinyl methyl)phenol and 2-methoxy-6-(4- iminoquinaldinyl methyl)phenol have been synthesized with the aid of direct reflux technique in ethanol solution. The synthesized compounds were characterized through CHN evalution, UV-visible, FTIR, 1H NMR and Mass spectral studies. The in vitro antimicrobial activities of the synthesized Schiff bases were tested using bacterial species such as Staphylococcus aureus, Bacillus cereus, Pseudomonas aeruginosa and Escherichia coli. These compounds were also tested for antifungal activities against Candida albicans and Aspergillus niger. All the Schiff bases were also screened for their anticancer activities against breast cancer MCF-7 cell line and colon cancer HT-29 cell line.

Keywords

Synthesis o-Vanillin Schiff base Spectral studies Biological activities

Article Details

How to Cite
Battin, S., Manikshete, A., Sarasamkar, S., Asabe, M., & Sathe, D. (2017). Synthesis, Spectral, Antibacterial, Antifungal and Anticancer Activity Studies of Schiff Bases Derived from o-vanillin and Aminoquinolines. Asian Journal of Organic & Medicinal Chemistry, 2(4), 143–148. https://doi.org/10.14233/ajomc.2017.AJOMC-P78

References

  1. M. Valiollah, T. Shahram, M. Majid and M. Maryam Bioorgan, Med. Chem. (N.Y.), 12, 4673 (2004).
  2. C.T. Supuran, A. Scozzafava, A. Popescu, R. Bobes-Tureac, A. Banciu, A. Creanga, G. Bobes-Tureac and M.D. Banciu, Eur. J. Med. Chem., 32, 445 (1997); https://doi.org/10.1016/S0223-5234(97)81681-9.
  3. M. Ziólek, J. Kubicki, A. Maciejewski, R. Naskrcki and A. Grabowska, Chem. Phys. Lett., 369, 80 (2003) https://doi.org/10.1016/S0009-2614(02)01985-1.
  4. S.K. Bharti, G. Nath, R. Tilak and S.K. Singh, Eur. J. Med. Chem., 45, 651 (2010); https://doi.org/10.1016/j.ejmech.2009.11.008.
  5. P.M. Ronad, M.N. Noolvi, S. Sapkal, S. Dharbhamulla and V.S. Maddi, Eur. J. Med. Chem., 45, 85 (2010); https://doi.org/10.1016/j.ejmech.2009.09.028.
  6. Z.H. Huang, S.L. Lin and J.L. Huang, Eur. J. Med. Chem., 36, 863 (2001); https://doi.org/10.1016/S0223-5234(01)01285-5.
  7. M.S. Nair and R.S. Joseyphus, Spectrochim. Acta A, 70, 749 (2008); https://doi.org/10.1016/j.saa.2007.09.006.
  8. Y.L. Xiang and F.Y. Wu, Spectrochim. Acta A, 77, 430 (2010); https://doi.org/10.1016/j.saa.2010.06.010.
  9. B. Tang, L. Zhang, J.X. Hu, P. Li, H. Zhang and Y.X. Zhao, Anal. Chim. Acta, 502, 125 (2004); https://doi.org/10.1016/j.aca.2003.09.052.
  10. F. Beaudry, A. Ross, P.P. Lema and P. Vachon, Phytother. Res., 24, 525 (2010); https://doi.org/10.1002/ptr.2975.
  11. H.J. Jung, Y.S. Song, K. Kim, C.J. Lim and E.H. Park, Arch. Pharm. Res., 33, 309 (2010); https://doi.org/10.1007/s12272-010-0217-2.
  12. E.J. Lim, H.J. Kang, H.J. Jung, Y.S. Song, C.J. Lim and E.H. Park, Biomol. Ther. (Seoul), 16, 132 (2008); https://doi.org/10.4062/biomolther.2008.16.2.132.
  13. A.-G. Xie, Y. Qu, M.-M. Wang, G.-Q. Gan, H. Chen, Z.-D. Lin and D. Zhen, J. Coord. Chem., 62, 2268 (2009); https://doi.org/10.1080/00958970902822127.
  14. G. Mazzanti, L. Battinelli, C. Pompeo, A.M. Serrilli, R. Rossi, I. Sauzullo, F. Mengoni and V. Vullo, Nat. Prod. Res., 22, 1433 (2008); https://doi.org/10.1080/14786410802075939.
  15. C. Queffelec, F. Bailly, G. Mbemba, J.-F. Mouscadet, Z. Debyser, S. Hayes, M. Witvrouw and P. Cotelle, Bioorg. Med. Chem. Lett., 18, 4736 (2008); https://doi.org/10.1016/j.bmcl.2008.06.063.
  16. F.A. Macías, A. Oliveros-Bastidas, D. Marín, C. Carrera, N. Chinchilla and J.M.G. Molinillo, Phytochem. Rev., 7, 179 (2007); https://doi.org/10.1007/s11101-007-9062-4.
  17. T.D. Xuan, T. Toyama, M. Fukuta, T.D. Khanh and S. Tawata, J. Agric. Food Chem., 57, 9448 (2009); https://doi.org/10.1021/jf902310j.
  18. S. Phogat and B.S. Yadav, Ann. Biol., 24, 63 (2008).
  19. V.S. Ashalakshmi and K. Mohanan, Asian J. Chem., 20, 623 (2008).
  20. B. Tang, L.L. Zang, J. Zang, X. Wang, Z.Z. Chen, H.J. Wang and C.J. Qu, Acta Chim. Sin., 62, 399 (2004).
  21. A. Barik, K.I. Priyadarsini and H. Mohan, Radiat. Phys. Chem., 70, 687 (2004); https://doi.org/10.1016/j.radphyschem.2003.09.007.
  22. I. Kaya, A. Bilici and M. Gul, Polym. Adv. Technol., 19, 1154 (2008); https://doi.org/10.1002/pat.1073.
  23. E.A. Velcheva, B.A. Stamboliyska and P.J. Boyadjieva, J. Mol. Struct., 963, 57 (2010); https://doi.org/10.1016/j.molstruc.2009.10.014.
  24. K. Kaur, M. Jain, R.P. Reddy and R. Jain, Eur. J. Med. Chem., 45, 3245 (2010); https://doi.org/10.1016/j.ejmech.2010.04.011.
  25. V. Krishnakumar, F.-R.N. Khan, B.K. Mandal, R. Dhasamandha, S. Mitta and V.N. Govindan, Res. Chem. Intermed., 38, 1819 (2012); https://doi.org/10.1007/s11164-012-0505-1.
  26. S. Bongarzone and M.L. Bolognesi, Expert Opin. Drug Discov., 6, 251 (2011); https://doi.org/10.1517/17460441.2011.550914.
  27. Z.G. Luo, C.C. Zeng, F. Wang, H.Q. He, C.X. Wang, H.G. Du and L.M. Hu, Chem. Res. Chin. Univ., 25, 841 (2009).
  28. V. R. Solomon and H. Lee, Curr. Med. Chem., 18, 1488 (2011); https://doi.org/10.2174/092986711795328382.
  29. R. Musiol, M. Serda, S. Hensel-Bielowka and J. Polanski, Curr. Med. Chem., 17, 1960 (2010); https://doi.org/10.2174/092986710791163966.
  30. J.R. Reid and N.D. Heindel, J. Heterocycl. Chem., 13, 925 (1976); https://doi.org/10.1002/jhet.5570130450.
  31. S. Durairaja, S. Srinivasan and P.L. Perumalsamy, Electron. J. Biol., 5, 5 (2009).
  32. E. Canpolat and M. Kaya, J. Coord. Chem., 57, 1217 (2004); https://doi.org/10.1080/00958970412331285913.
  33. K.M. Ibrahim, A.A. El-Asmy, M.M. Bekheit and M.M. Mostafa, Transition Met.Chem, 10, 175 (1985); https://doi.org/10.1007/BF00620666.
  34. B. Tang, Talanta, 64, 955 (2004); https://doi.org/10.1016/j.talanta.2004.04.016.
  35. M.B. Fugu, N.P. Ndahi, B.B. Paul and A.N. Mustapha, J. Chem. Pharm. Res., 5, 22 (2013).
  36. Z. Wang, J. Gao, J. Wang, X. Jin, M. Zou, K. Li and P. Kang, Spectrochim. Acta Part A, 83, 511 (2011); https://doi.org/10.1016/j.saa.2011.08.076.
  37. S. Tabassum, S. Yadav and I. Ahmad, J. Org. Chem., 752, 17 (2014); https://doi.org/10.1016/j.jorganchem.2013.11.023.
  38. G. Zengin, A.M.N. Al-Kawaz, H. Zengin, A. Mert and B. Kucuk, J. Mol. Struct., 1103, 45 (2016); https://doi.org/10.1016/j.molstruc.2015.09.016.
  39. N. Thilagavathi, A. Manimaran, N.P. Priya, C. Jayabalakrishnan and N. Sathya, Appl. Organometal. Chem., 24, 301 (2010); https://doi.org/10.1002/aoc.1601.
  40. E.F. Bowrsand and L.R. Jeffries, J. Clin. Pathol., 8, 58 (1995).
  41. C.H. Collins, P.M. Lyne and J.M. Grange, Collins and Lyne’s Microbio-logical Methods, Butterworth Heinemann, Oxford, edn 8, p. 320 (1995).
  42. A.H. Manikshete, S.K. Sarsamkar, S.A. Deodware, V.N. Kamble and M.R. Asabe, Inorg. Chem. Commun., 14, 618 (2011); https://doi.org/10.1016/j.inoche.2011.01.016.
  43. A.H. Manikshethe, M.M. Awatade, S.K. Sarsamkar and M.R. Asabe, Int. J. Eng. Sci. Invent., 4, 22 (2015).
  44. B. Wang, Z.-Y. Yang, D. Qin and Z.-N. Chen, J. Photochem. Photobiol. Chem., 194, 49 (2008); https://doi.org/10.1016/j.jphotochem.2007.07.024.
  45. P. Houghton, R. Fang, I. Techatanawat, G. Steventon, P.J. Hylands and C.C. Lee, Methods, 42, 377 (2007); https://doi.org/10.1016/j.ymeth.2007.01.003.