Main Article Content

Abstract

Ethyl-3-(7-benzyloxy-4-methyl-2-oxo-2H-8-chromenyl)-5-aryl-4,5- dihydro-4-isoxazole carboxylates (9a-e) and ethyl-3-)7-benzyloxy- 3-chloro-4-methyl-2-oxo-2H-8-chromenyl)-5-aryl-4,5-dihydro-4- isoxazole carboxylates (11a-e) were prepared by 1,3-dipolar nitrile oxide cycloaddition reactions of 7-benzyloxy-4-methyl-coumarin aldehyde chloro oxime (5) and 7-benzyloxy-3-chloro-4-methyl-coumarin aldehyde chlorooxime (6) with ethyl trans-cinnamates (8a-e) at room temperature. The method is useful for the construction of several biologically active heterocycles. The structures of synthesized compounds are established based on IR, NMR (proton, NOESY) and mass spectrometry. The antimicrobial activity of synthesized compounds were evaluated.

Keywords

Isoxazoline Chlorooximes Unsaturated esters Nitrile oxide Regioselectivity Antimicrobial activity 1,3-Dipolar cycloaddition

Article Details

How to Cite
Krishna, C., Vijaya Bhargavi, M., & David Krupadanam, G. (2018). Facile Regioselective Synthesis and Antimicrobial Activity of Novel 8-Isoxazolinyl Coumarins via Nitrile Oxide Cycloaddition Approach. Asian Journal of Organic & Medicinal Chemistry, 2(4), 149–155. https://doi.org/10.14233/ajomc.2017.AJOMC-P80

References

  1. K.N. Venugopala, V. Rashmi and B. Odhav, BioMed Res. Int., Article ID 963248 (2013); https://doi.org/10.1155/2013/963248.
  2. S. Sandhu, Y. Bansal, O. Silakari and G. Bansal, Bioorg. Med. Chem., 22, 3806 (2014); https://doi.org/10.1016/j.bmc.2014.05.032.
  3. R. Choure and K.S. Pitre, Can. J. Chem. Eng. Technol., 1, 7 (2010).
  4. H.B. Lad, R.R. Giri and D.I. Brahmbhatt, Chin. Chem. Lett., 24, 227 (2013); https://doi.org/10.1016/j.cclet.2013.01.041.
  5. A. Lacy and O.R. Kennedy, Curr. Pharm. Des., 10, 3797 (2004); https://doi.org/10.2174/1381612043382693.
  6. A. Witaicenis, L.N. Seito, A. da Silveira Chagas, L.D. de Almeida, A.C. Luchini, P. Rodrigues-Orsi, S.H. Cestari and L.C. Di Stasi, Phyto-medicine, 21, 240 (2014); https://doi.org/10.1016/j.phymed.2013.09.001.
  7. T.O. Olomola, R. Klein, N. Mautsa, Y. Sayed and P.T. Kaye, Bioorg. Med. Chem., 21, 1964 (2013); https://doi.org/10.1016/j.bmc.2013.01.025.
  8. M.O. Karatas, B. Alici, U. Cakir, E. Cetinkaya, D. Demir, A. Ergün, N. Gencer and O. Arslan, J. Enzyme Inhib. Med. Chem., 28, 299 (2013); https://doi.org/10.3109/14756366.2012.677838.
  9. K.V. Sairam, B.M. Gurupadayya, R.S. Chandan, D.K. Nagesha and B. Vishwanathan, Curr. Drug Deliv., 13, 186 (2016); https://doi.org/10.2174/1567201812666150702102800.
  10. M. Khoobi, A. Foroumadi, S. Emami, M. Safavi, G. Dehghan, B.H. Alizadeh, A. Ramazani, S.K. Ardestani and A. Shafiee, Chem. Biol. Drug Des., 78, 580 (2011); https://doi.org/10.1111/j.1747-0285.2011.01175.x.
  11. J. Grover and S.M. Jachak, RSC Adv., 5, 38892 (2015); https://doi.org/10.1039/C5RA05643H.
  12. K. Zheng, W. Lin, L. Tan, H. Chen and H. Cui, Chem. Sci., 5, 3439 (2014); https://doi.org/10.1039/C4SC00283K.
  13. T.D. Penning, J.J. Talley, S.R. Bertenshaw, J.S. Carter, P.W. Collins, S. Docter, M.J. Graneto, L.F. Lee, J.W. Malecha, J.M. Miyashiro, R.S. Rogers, D.J. Rogier, S.S. Yu, G.D. Anderson, E.G. Burton, J.N. Cogburn, S.A. Gregory, C.M. Koboldt, W.E. Perkins, K. Seibert, A.W. Veenhuizen, Y.Y. Zhang and P.C. Isakson, J. Med. Chem., 40, 1347 (1997); https://doi.org/10.1021/jm960803q.
  14. J. Elguero, eds.: A.R. Katrizky and C.W. Rees, Comprehensive Hetero-cyclic Chemistry II; Pergamon: Oxford, vol. 3, p. 1 (1996).
  15. L. Meng, B.A. Lorsbach, T.C. Sparks, J.C. Fettinger and M.J. Kurth, J. Comb. Chem., 12, 129 (2010); https://doi.org/10.1021/cc900133k.
  16. A. Nefzi, J.M. Ostresh and R.A. Houghten, Chem. Rev., 97, 449 (1997); https://doi.org/10.1021/cr960010b.
  17. D.A. Horton, G.T. Bourne and M.L. Smythe, Chem. Rev., 103, 893 (2003); https://doi.org/10.1021/cr020033s.
  18. A. Nefzi, J.M. Ostresh, J. Yu and R.A. Houghten, J. Org. Chem., 69, 3603 (2004); https://doi.org/10.1021/jo040114j.
  19. M.A. Gallop, R.W. Barrett, W.J. Dower, S.P.A. Fodor and E.M. Gordon, J. Med. Chem., 37, 1233 (1994); https://doi.org/10.1021/jm00035a001.
  20. Y.-S. Lee and B. Hyean Kim, Bioorg. Med. Chem. Lett., 12, 1395 (2002); https://doi.org/10.1016/S0960-894X(02)00182-8.
  21. S. Srivastava, L.K. Bajpai, S. Batra, A.P. Bhaduri, J.P. Maikhuri, G. Gupta and J.D. Dhar, Bioorg. Med. Chem., 7, 2607 (1999); https://doi.org/10.1016/S0968-0896(99)00188-1.
  22. D. Simoni, G. Grisolia, G. Giannini, M. Roberti, R. Rondanin, L. Piccagli, R. Baruchello, M. Rossi, R. Romagnoli, F.P. Invidiata, S. Grimaudo, M.K. Jung, E. Hamel, N. Gebbia, L. Crosta, V. Abbadessa, A. Di Cristina, L. Dusonchet, M. Meli and M. Tolomeo, J. Med. Chem., 48, 723 (2005); https://doi.org/10.1021/jm049622b.
  23. J.J. Talley, D.L. Brown, J.S. Carter, M.J. Graneto, C.M. Koboldt, J.L. Masferrer, W.E. Perkins, R.S. Rogers, A.F. Shaffer, Y.Y. Zhang, B.S. Zweifel and K. Seibert, J. Med. Chem., 43, 775 (2000); https://doi.org/10.1021/jm990577v.
  24. S. Dadiboyena, J. Xu and A.T. Hamme II, Tetrahedron Lett., 48, 1295 (2007); https://doi.org/10.1016/j.tetlet.2006.12.005.
  25. S. Dadiboyena and A. Nefzi, Eur. J. Med. Chem., 45, 4697 (2010); https://doi.org/10.1016/j.ejmech.2010.07.045.
  26. A.P. Kozikowski, Acc. Chem. Res., 17, 410 (1984); https://doi.org/10.1021/ar00108a001.
  27. B.B. Shankar, D.Y. Yang, S. Girton and A.K. Ganguly, Tetrahedron Lett., 39, 2447 (1998); https://doi.org/10.1016/S0040-4039(98)00237-8.
  28. R.E. Sammelson, T. Ma, L.J.V. Galietta, A.S. Verkman and M.J. Kurth, Bioorg. Med. Chem. Lett., 13, 2509 (2003); https://doi.org/10.1016/S0960-894X(03)00482-7.
  29. G. Bal, P. Van der Veken, D. Antonov, A.-M. Lambeir, P. Grellier, S.L. Croft, K. Augustyns and A. Haemers, Bioorg. Med. Chem. Lett., 13, 2875 (2003); https://doi.org/10.1016/S0960-894X(03)00579-1.
  30. A. Gopalsamy, M. Shi, J. Golas, E. Vogan, J. Jacob, M. Johnson, F. Lee, R. Nilakantan, R. Petersen, K. Svenson, R. Chopra, M.S. Tam, Y. Wen, J. Ellingboe, K. Arndt and F. Boschelli, J. Med. Chem., 51, 373 (2008); https://doi.org/10.1021/jm701385c.
  31. R. Huisgen, ed.: A. Padwa, 1,3-Dipolar Cycloaddition Chemistry, Wiley: NewYork, vols. 1 and 2 (1984).
  32. K.B.G. Torssell, Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis; VCH: New York (1988).
  33. V. Jaeger and P.A. Colinas, ed.: A. Padwa, Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Towards Heterocycles and Natural Products, Wiley: Hoboken, vol. 59, p. 361 (2002).
  34. K.S. Atwal, G.J. Grover, S.Z. Ahmed, F.N. Ferrara, T.W. Harper, K.S. Kim, P.G. Sleph, S. Dzwonczyk and A.D. Russell, J. Med. Chem., 36, 3971 (1993); https://doi.org/10.1021/jm00076a027.
  35. W.A. Ayer and K. Nozawa, Can. J. Microbiol., 36, 83 (1990); https://doi.org/10.1139/m90-016.
  36. W. Pfefferle, H. Anke, M. Bross, B. Steffan, R. Vianden and W. Steglich, J. Antibiot., 43, 648 (1990); https://doi.org/10.7164/antibiotics.43.648.
  37. D.R. Bender, D. Kanne, J.D. Frazier and H. Rapoport, J. Org. Chem., 48, 2709 (1983); https://doi.org/10.1021/jo00164a015.