Main Article Content

Abstract

A greener method for the conjugate addition of amines to conjugated alkenes via aza-Michael reaction under the influence of water extract of the biocatalyst derived of Musa balbisiana (Colla) was developed. Reaction yields was excellent at room temperature where several amines to α,β-unsaturated ketones, esters (specially Baylis-Hillman adducts) and nitriles has been carried out efficiently in water. Bio-catalysts used in the reaction can be reused for several times. Bis-product formation can be controlled by varying the ratio of substrates in this environmentally benign procedure, which has provided clean formation of the products with good selectivity.

Keywords

Aza-Michael Biocatalyst Musa balbisiana (Colla). b-Aminocarbonyl b-Aminonitrile

Article Details

How to Cite
Saikia, M., Das, P., & C. Deka, D. (2017). Synthesis of β-Aminocarbonyl and β-Aminonitrile Compounds Catalyzed byWater Extract of Musa balbisiana (Colla) via Aza-Michael Reaction. Asian Journal of Organic & Medicinal Chemistry, 2(4), 138–142. https://doi.org/10.14233/ajomc.2017.AJOMC-P77

References

  1. E.F. Kleinmann and B.M. Trost, Comprehensive Organic Synthesis Selectivity, Strategy and Efficiency in Modern Organic Chemistry, Pergamon: New York, pp. 893-915 (1991).
  2. G.I. Georg, The Organic Chemistry of b-Lactams, VCH: New York (2001).
  3. P.N. Devine, R.M. Heid Jr. and D.M. Tschaen, Tetrahedron, 53, 6739 (1997); https://doi.org/10.1016/S0040-4020(97)00325-6.
  4. G. Cardillo and C. Tomasini, Chem. Soc. Rev., 25, 117 (1996); https://doi.org/10.1039/CS9962500117.
  5. B.K. Banik, F.F. Becker and I. Banik, Bioorg. Med. Chem., 12, 2523 (2004); https://doi.org/10.1016/j.bmc.2004.03.033.
  6. Y. Hayashi, J. Katada, T. Harada, A. Tachiki, K. Iijima, Y. Takiguchi, M. Muramatsu, H. Miyazaki, T. Asari, T. Okazaki, Y. Sato, E. Yasuda, M. Yano, I. Uno and I. Ojima, J. Med. Chem., 41, 2345 (1998); https://doi.org/10.1021/jm980126v.
  7. J. Frackenpohl, P.I. Arvidsson, J.V. Schreiber and D. Seebach, ChemBioChem, 2, 445 (2001); https://doi.org/10.1002/1439-7633(20010601)2:6<445::AID-CBIC445>3.0.CO;2-R.
  8. S. Kobayashi and H. Ishitani, Chem. Rev., 99, 1069 (1999); https://doi.org/10.1021/cr980414z.
  9. M. Arend, B. Westermann and N. Risch, Angew. Chem. Int. Ed., 37, 1044 (1998); https://doi.org/10.1002/(SICI)1521-3773(19980504)37:8<1044::AID-ANIE1044>3.0.CO;2-E.
  10. M.E. Jung and B.M. Trost, Comprehensive Organic Synthesis, Pergamon: New York, vol. 4, pp. 30-41 (1991).
  11. P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Pergamon: New York, p. 114 (1992).
  12. N. Asao, T. Shimada, T. Sudo, N. Tsukada, K. Yazawa, V. Gyoung, V. Uyehara and Y. Yamamoto, J. Org. Chem., 62, 6274 (1997); https://doi.org/10.1021/jo970435d.
  13. S. Kobayashi, K. Kakumoto and M. Sugiura, Org. Lett., 4, 1319 (2002); https://doi.org/10.1021/ol0256163.
  14. T.P. Loh and L.L. Wei, Synlett, 975 (1998); https://doi.org/10.1055/s-1998-1845.
  15. G. Bartoli, M. Bosco, E. Marcantoni, M. Petrini, L. Sambri and E. Torregiani, J. Org. Chem., 66, 9052 (2001); https://doi.org/10.1021/jo0108764.
  16. G. Jenner, Tetrahedron Lett., 36, 233 (1995); https://doi.org/10.1016/0040-4039(94)02215-W.
  17. I. Reboule, R. Gil and J. Collin, Tetrahedron Lett., 46, 7761 (2005); https://doi.org/10.1016/j.tetlet.2005.09.039.
  18. T.C. Wabnitz and J.B. Spencer, Tetrahedron Lett., 43, 3891 (2002); https://doi.org/10.1016/S0040-4039(02)00654-8.
  19. N. Srivastava and B.K. Banik, J. Org. Chem., 68, 2109 (2003); https://doi.org/10.1021/jo026550s.
  20. R. Varala, M.M. Alam and S.R. Adapa, Synlett, 720 (2003); https://doi.org/10.1055/s-2003-38345.
  21. N. Azizi and M.R. Saidi, Tetrahedron, 60, 383 (2004); https://doi.org/10.1016/j.tet.2003.11.012.
  22. L.W. Xu, L. Li and C.G. Xia, Helv. Chim. Acta, 87, 1522 (2004); https://doi.org/10.1002/hlca.200490139.
  23. M.A. Naik, B.G. Mishra and A. Dubey, React. Kinet. Catal. Lett., 91, 169 (2007); https://doi.org/10.1007/s11144-007-5128-y.
  24. S.Y. Wang, S.J. Ji and T.P. Loh, Synlett, 2377 (2003); https://doi.org/10.1055/s-2003-42105.
  25. C. Yeom, M.J. Kim and B.M. Kim, Tetrahedron, 63, 904 (2007); https://doi.org/10.1016/j.tet.2006.11.037.
  26. Y.J. Cao, Y.J. Lai, X. Wang, Y.J. Li and W.J. Xiao, Tetrahedron Lett., 48, 21 (2007); https://doi.org/10.1016/j.tetlet.2006.11.037.
  27. M. Bandini, A. Eichholzer, M. Monari, F. Piccinelli and A. Umani-Ronchi, Eur. J. Org. Chem., 18, 2917 (2007); https://doi.org/10.1002/ejoc.200601139.
  28. Y. Yang, D. Xiang, X. Zhao, Y. Liang, J. Huang and D. Dong, Tetrahedron, 64, 4959 (2008); https://doi.org/10.1016/j.tet.2008.03.093.
  29. B.C. Ranu and S.S. Dey, Tetrahedron, 60, 4183 (2004); https://doi.org/10.1016/j.tet.2004.03.052.
  30. H. He, L.X. Dai and S.L. You, Org. Biomol. Chem., 8, 3207 (2010); https://doi.org/10.1039/b924770j.
  31. J.M. Xu, Q. Wu, W. Zhang, F. Zhang and X.F. Lin, Eur. J. Org. Chem., 1798 (2007); https://doi.org/10.1002/ejoc.200600999.
  32. V.R. Choudhary, D.K. Dumbre and S.K. Patil, RSC Adv., 2, 7061 (2012); https://doi.org/10.1039/c2ra01323a.
  33. X.Y. Liu, J.W. Zhao, G.F. Jin, G. Zhao, S.Z. Zhu and S.S.W. Wang, Tetrahedron, 61, 3841 (2005); https://doi.org/10.1016/j.tet.2005.01.130.
  34. B.C. Ranu, S.S. Dey and A. Hajra, Tetrahedron, 59, 2417 (2003); https://doi.org/10.1016/S0040-4020(03)00289-8.
  35. L.W. Xu, I.W. Li, S.L. Zhou and C.G. Xia, New J. Chem., 28, 183 (2004); https://doi.org/10.1039/B312047C.
  36. J. Wang, P.F. Li, S.H. Chan, A.S.C. Chan and F.Y. Kwong, Tetrahedron Lett., 53, 2887 (2012); https://doi.org/10.1016/j.tetlet.2012.03.132.
  37. R. Jiang, D.-H. Li, J. Jiang, X.-P. Xu, T. Chen and S.-J. Ji, Tetrahedron, 67, 3631 (2011); https://doi.org/10.1016/j.tet.2011.03.082.
  38. D.C. Deka and N.N. Talukdar, Indian J. Tradit. Knowl., 6, 72 (2007).
  39. D.C. Deka and S. Basumatary, Biomass Bioenergy, 35, 1797 (2011); https://doi.org/10.1016/j.biombioe.2011.01.007.
  40. M. Saikia, D. Kakati, M.S. Joseph and J.C. Sarma, Lett. Org. Chem., 6, 654 (2009); https://doi.org/10.2174/157017809790442961.
  41. M. Saikia, D.C. Deka and S. Karmakar, Curr. Microwave Chem., 3, 47 (2016); https://doi.org/10.2174/2213335602666150505220420.
  42. M. Saikia and J.C. Sarma, Can. J. Chem., 88, 1271 (2010); https://doi.org/10.1139/V10-133.
  43. J.S. Yadav, A.R. Reddy, Y.G. Rao, A.V. Narsaiah and B.V.S. Reddy, Synthesis, 3447 (2007); https://doi.org/10.1055/s-2007-990876.
  44. C. Mukherjee and A.K. Misra, Lett. Org. Chem., 4, 54 (2007); https://doi.org/10.2174/157017807780037414.