Main Article Content

Abstract

Schiff bases are aldehyde-like compounds in which an imine group replaces the carbonyl group. They are widely used for industrial purposes and also exhibit a broad range of biological activities. This study represents the synthesis of a new series of (E)-N-benzylidene-5-bromo-2-chloropyrimidin-4-amine derivatives (6a-l). The newly synthesized compounds were characterized by different spectral studies. All these compounds are screened for their anti-inflammatory, antimicrobial and in vitro antioxidant activities. The structure-activity relationship analysis demonstrates that hydroxyl groups on the aromatic ring contribute critically to the antioxidant activity. Compounds 6k, 6j, 6d and 6e showed significant radical scavenging and compounds 6d, 6e and 6f showed good antimicrobial and anti-inflammatory activities.

Keywords

Schiff base Aldehydes Antimicrobial activity Antioxidant activity Anti-inflammatory

Article Details

How to Cite
Vasanth Patil, H., Lakshmi Ranganatha, V., Prashanth, T., & Mallikarjunaswamy, C. (2018). Synthesis and Biological Applications of (E)-N-Benzylidene-5-bromo-2-chloropyrimidin-4-amine Derivatives. Asian Journal of Organic & Medicinal Chemistry, 3(1), 1–9. https://doi.org/10.14233/ajomc.2018.AJOMC-P89

References

  1. (a) T. Finkel, Nat. Rev. Mol. Cell Biol., 6, 971 (2005); https://doi.org/10.1038/nrm1763. (b) P.S. Hussain, L.J. Hofseth and C.C. Harris, Nat. Rev. Cancer, 3, 276 (2003); https://doi.org/10.1038/nrc1046. (c) T. Finkel and N.J. Holbrook, Nature, 408, 239 (2000); https://doi.org/10.1038/35041687.
  2. B.N. Ames, M.K. Shigenaga and T.M. Hagen, Proc. Natl. Acad. Sci., USA, 90, 7915 (1993);
  3. A.A. Horton, S. Fairhurst and J.S. Bus, Crit. Rev. Toxicol., 18, 27 (1987); https://doi.org/10.3109/10408448709089856.
  4. H.L. Wang, Z.Y. Yang and B.D. Wang, Transition Met. Chem., 31, 470 (2006); https://doi.org/10.1007/s11243-006-0015-3.
  5. M. Bandyopadhyay, R. Chakraborty and U. Raychaudhuri, LWT-Food Sci. Technol., 40, 842 (2007); https://doi.org/10.1016/j.lwt.2006.05.007.
  6. A. Seyoum, K. Asres and F.K. El-Fiky, Phytochemistry, 67, 2058 (2006); https://doi.org/10.1016/j.phytochem.2006.07.002.
  7. B.H. Cruz, J.M. DiazCruz, C. Arino, R. Tauler and M. Esteban, Anal. Chim. Acta, 424, 203 (2000); https://doi.org/10.1016/S0003-2670(00)01109-0.
  8. Y.Z. Tang and Z.Q. Liu, Cell Biochem. Funct., 26, 185 (2008); https://doi.org/10.1002/cbf.1426.
  9. R.R. Williams and J.K. Cline, J. Am. Chem. Soc., 58, 1504 (1936); https://doi.org/10.1021/ja01299a505.
  10. C. Reidlinger, R. Dworczak, W.M.F. Fabian and H. Junek, Dyes Pigments, 24, 185 (1994); https://doi.org/10.1016/0143-7208(94)80009-X.
  11. G.E. Hardtman and H. Otto, U.S. Patent 366369 (1971); Chem. Abstr., 77, 52313 (1972).
  12. H.N. Hafez, H.S. Abbas and A.B.A. El-Gazzar, Acta Pharmcol., 58, 359 (2008).
  13. V. Gressler, S. Moura, A.F.C. Flores, D.C. Flores, P. Colepicolo and E. Pinto, J. Braz. Chem. Soc., 21, 1477 (2010); https://doi.org/10.1590/S0103-50532010000800010.
  14. M. Prasenjit, J. Soma and K.K. Lakshmi, Pharm. Res., 3, 17 (2010).
  15. O.A. Fathalla, N.A. Mohamed, E.M. Abbas, S.I. Abd-Elmoez and A.M. Soliman, World J. Chem., 4, 141 (2009).
  16. S.A. El-Assiery, G.H. Sayed and A. Fouda, Acta Pharm., 54, 143 (2004).
  17. R. Bamnela and S.P. Shrivastava, E-J. Chem., 7, 935 (2010); https://doi.org/10.1155/2010/927601.
  18. M. Okabe, R.C. Sun and G.B. Zenchoff, J. Org. Chem., 56, 4392 (1991); https://doi.org/10.1021/jo00014a013.
  19. D.N. Dhar and C.L. Taploo, J. Sci. Ind. Res. (India), 41, 501 (1982).
  20. P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski and F. Bartl, Curr. Org. Chem., 13, 124 (2009); https://doi.org/10.2174/138527209787193774.
  21. G. Bringmann, M. Dreyer, J.H. Faber, P.W. Dalsgaard, J.W. Jaroszewski, H. Ndangalasi, F. Mbago, R. Brun and S.B. Christensen, J. Nat. Prod., 67, 743 (2004); https://doi.org/10.1021/np0340549.
  22. M.J. Burkitt and J. Duncan, Arch. Biochem. Biophys., 381, 253 (2000); https://doi.org/10.1006/abbi.2000.1973.
  23. Y.J. Shang, Y.P. Qian, X.D. Liu, F. Dai, X.L. Shang, W.Q. Jia, Q. Liu, J.G. Fang and B.J. Zhou, J. Org. Chem., 74, 5025 (2009); https://doi.org/10.1021/jo9007095.
  24. S.C. Mohan, S.J. Jenniefer, P.T. Muthiah and K. Jothivenkatachalam, Acta Crystallogr. Sect. E Struct. Rep. Online, 69, i45 (2013); https://doi.org/10.1107/S1600536813018187.
  25. M. Cuendet, K. Hostettmann, O. Potterat and W. Dyatmiko, Helv. Chim. Acta, 80, 1144 (1997); https://doi.org/10.1002/hlca.19970800411.
  26. M. Burits and F. Bucar, Phytother. Res., 14, 323 (2000); https://doi.org/10.1002/1099-1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q.
  27. L.C. Green, D.A. Wagner, J. Glogowski, P.L. Skipper, J.K.S.R. Wishnok and S.R. Tannenbaum, Anal. Biochem., 126, 131 (1982); https://doi.org/10.1016/0003-2697(82)90118-X.
  28. L. Marcocci, J.J. Maguire, M.T. Droy-Lefaix and L. Packer, Biochem. Biophys. Res. Commun., 201, 748 (1994); https://doi.org/10.1006/bbrc.1994.1764.
  29. R.J. Ruch, S.J. Cheng and J.E. Klaunig, Carcinogenesis, 10, 1003 (1989); https://doi.org/10.1093/carcin/10.6.1003.
  30. Y. Mizushima and M. Kobayashi, J. Pharm. Pharmacol., 20, 169 (1968); https://doi.org/10.1111/j.2042-7158.1968.tb09718.x.
  31. R.S. Verma and S.A. Imam, Indian J. Microbiol., 13, 45 (1973).
  32. M. Bakavoli, G. Bagherzadeh, M. Vaseghifar, A. Shiri, M. Pordel, M. Mashreghi, P. Pordeli and M. Araghi, Eur. J. Med. Chem., 45, 647 (2010); https://doi.org/10.1016/j.ejmech.2009.10.051.
  33. T. Yakaiah, B.P.V. Lingaiah, B. Narsaiah, K.P. Kumar and U.S.N. Murthy, Eur. J. Med. Chem., 43, 341 (2008); https://doi.org/10.1016/j.ejmech.2007.03.031.
  34. E. Jayachandran, K. Bhatia, L.V.G. Nargund and A. Roy, Indian Drugs, 40, 408 (2003).
  35. M. Cheung, P.A. Harris and K.E. Lackey, Tetrahedron Lett., 42, 999 (2001); https://doi.org/10.1016/S0040-4039(00)02219-X.
  36. E.G. McIver, J. Bryans, K. Birchall, J. Chugh, T. Drake, S.J. Lewis, J. Osborne, E. Smiljanic-Hurley, W. Tsang, A. Kamal, A. Levy, M. Newman, D. Taylor, J.S.C. Arthur, K. Clark and P. Cohen, Bioorg. Med. Chem. Lett., 22, 7169 (2012); https://doi.org/10.1016/j.bmcl.2012.09.063.
  37. G. Litwinienko and K.U. Ingold, Acc. Chem. Res., 40, 222 (2007); https://doi.org/10.1021/ar0682029.