Main Article Content
Abstract
Novozyme 435 (commercially immobilized lipase B from Candida antarctica) was found to catalyze the intramolecular Cannizzaro reaction of phenylglyoxal in aqueous medium forming mandelic acid. Simultaneously, the oxidation of phenylglyoxal to phenylglyoxylic acid was also found to take place. For optimization of conversion of each of these products, different enzymes were tried as the biocatalyst. The presence of various organic co-solvents was also found to have a marked effect of the course of the reaction.
Keywords
Article Details
References
- R.A. Sheldon, R. Schoevaart and L.M. van Langen, Biocatal. Biotransform., 23, 141 (2005); https://doi.org/10.1080/10242420500183378.
- D. Malhotra, J. Mukherjee and M.N. Gupta, eds.: T.M. Letcher, J.L. Scott and D.A. Patterson, Chemical Processes for a Sustainable Future, The Royal Society of Chemistry, U.K., p. 388 (2015).
- R.J. Kazlauskas, Curr. Opin. Chem. Biol., 9, 195 (2005); https://doi.org/10.1016/j.cbpa.2005.02.008.
- K. Hult and P. Berglund, Trends Biotechnol., 25, 231 (2007); https://doi.org/10.1016/j.tibtech.2007.03.002.
- M.N. Gupta, M. Kapoor, A.B. Majumder and V. Singh, Curr. Sci., 100, 1152 (2011).
- B. Arora, J. Mukherjee and M.N. Gupta, Sus. Chem. Processes, 2, 25 (2014); https://doi.org/10.1186/s40508-014-0025-y.
- G.M. Coppola and H.F. Schuster, a-Hydroxy Acids in Enantioselective Synthesis, VCH, Weinheim, Germany (1997).
- E.R. Alexander, J. Am. Chem. Soc., 69, 289 (1947); https://doi.org/10.1021/ja01194a038.
- J. Hine and G.F. Koser, J. Org. Chem., 36, 3591 (1971); https://doi.org/10.1021/jo00822a028.
- W.V.E. Doering, T.I. Taylor and E.F. Schoenewaldt, J. Am. Chem. Soc., 70, 455 (1948); https://doi.org/10.1021/ja01182a006.
- J. Hine and C.D. Fischer Jr., J. Am. Chem. Soc., 97, 6513 (1975); https://doi.org/10.1021/ja00855a038.
- K. Maruyama, Y. Murakami, K. Yoda, T. Mashino and A. Nishinaga, J. Chem. Soc. Chem. Commun., 1617 (1992); https://doi.org/10.1039/C39920001617.
- A.E. Russell, S.P. Miller and J.P. Morken, J. Org. Chem., 65, 8381 (2000); https://doi.org/10.1021/jo0010734.
- M.S. Abaee, R. Sharifi and M.M. Mojtahedi, Org. Lett., 7, 5893 (2005); https://doi.org/10.1021/ol052506y.
- M. Curini, F. Epifano, S. Genovese, M.C. Marcotullio and O. Rosati, Org. Lett., 7, 1331 (2005); https://doi.org/10.1021/ol050125e.
- K. Ishihara, T. Yano and M. Fushimi, J. Fluor. Chem., 129, 994 (2008); https://doi.org/10.1016/j.jfluchem.2008.04.008.
- Z. Wang, Y. Jiang, A. Baiker and J. Huang, ACS Catal., 3, 1573 (2013); https://doi.org/10.1021/cs400271e.
- S.S. Hall, A.M. Doweyko and F. Jordan, J. Am. Chem. Soc., 98, 7460 (1976); https://doi.org/10.1021/ja00439a077.
- S.S. Hall, A.M. Doweyko and F. Jordan, J. Am. Chem. Soc., 100, 5934 (1978); https://doi.org/10.1021/ja00486a054.
- B. Arora, P.S. Pandey and M.N. Gupta, Tetrahedron Lett., 55, 3920 (2014); https://doi.org/10.1016/j.tetlet.2014.05.022.
- M. Ogata and R. Sugihara, Int. Arch. Occup. Environ. Health, 42, 11 (1978); https://doi.org/10.1007/BF00385707.
- C. Laane, Biocatalysis, 30, 80 (1987).
- J.-P. Fu, N. Gao, Y. Yang, Z. Guan and Y.-H. He, J. Mol. Catal. B Enzym., 97, 1 (2013); https://doi.org/10.1016/j.molcatb.2013.06.016.
- X.-Y. Chen, Y.-R. Liang, F.-L. Xu, Q. Wu and X.-F. Lin, J. Mol. Catal. B Enzym., 97, 18 (2013); https://doi.org/10.1016/j.molcatb.2013.07.012.
- L. Jiang and H.-W. Yu, Biotechnol. Lett., 36, 99 (2014); https://doi.org/10.1007/s10529-013-1329-9.
- S. Jung, J. Kim and S. Park, RSC Adv., 3, 2590 (2013); https://doi.org/10.1039/c2ra23333a.
- M.M.H. Graf, U. Bren, D. Haltrich and C. Oostenbrink, J. Comput. Aided Mol. Des., 27, 295 (2013); https://doi.org/10.1007/s10822-013-9645-7.
References
R.A. Sheldon, R. Schoevaart and L.M. van Langen, Biocatal. Biotransform., 23, 141 (2005); https://doi.org/10.1080/10242420500183378.
D. Malhotra, J. Mukherjee and M.N. Gupta, eds.: T.M. Letcher, J.L. Scott and D.A. Patterson, Chemical Processes for a Sustainable Future, The Royal Society of Chemistry, U.K., p. 388 (2015).
R.J. Kazlauskas, Curr. Opin. Chem. Biol., 9, 195 (2005); https://doi.org/10.1016/j.cbpa.2005.02.008.
K. Hult and P. Berglund, Trends Biotechnol., 25, 231 (2007); https://doi.org/10.1016/j.tibtech.2007.03.002.
M.N. Gupta, M. Kapoor, A.B. Majumder and V. Singh, Curr. Sci., 100, 1152 (2011).
B. Arora, J. Mukherjee and M.N. Gupta, Sus. Chem. Processes, 2, 25 (2014); https://doi.org/10.1186/s40508-014-0025-y.
G.M. Coppola and H.F. Schuster, a-Hydroxy Acids in Enantioselective Synthesis, VCH, Weinheim, Germany (1997).
E.R. Alexander, J. Am. Chem. Soc., 69, 289 (1947); https://doi.org/10.1021/ja01194a038.
J. Hine and G.F. Koser, J. Org. Chem., 36, 3591 (1971); https://doi.org/10.1021/jo00822a028.
W.V.E. Doering, T.I. Taylor and E.F. Schoenewaldt, J. Am. Chem. Soc., 70, 455 (1948); https://doi.org/10.1021/ja01182a006.
J. Hine and C.D. Fischer Jr., J. Am. Chem. Soc., 97, 6513 (1975); https://doi.org/10.1021/ja00855a038.
K. Maruyama, Y. Murakami, K. Yoda, T. Mashino and A. Nishinaga, J. Chem. Soc. Chem. Commun., 1617 (1992); https://doi.org/10.1039/C39920001617.
A.E. Russell, S.P. Miller and J.P. Morken, J. Org. Chem., 65, 8381 (2000); https://doi.org/10.1021/jo0010734.
M.S. Abaee, R. Sharifi and M.M. Mojtahedi, Org. Lett., 7, 5893 (2005); https://doi.org/10.1021/ol052506y.
M. Curini, F. Epifano, S. Genovese, M.C. Marcotullio and O. Rosati, Org. Lett., 7, 1331 (2005); https://doi.org/10.1021/ol050125e.
K. Ishihara, T. Yano and M. Fushimi, J. Fluor. Chem., 129, 994 (2008); https://doi.org/10.1016/j.jfluchem.2008.04.008.
Z. Wang, Y. Jiang, A. Baiker and J. Huang, ACS Catal., 3, 1573 (2013); https://doi.org/10.1021/cs400271e.
S.S. Hall, A.M. Doweyko and F. Jordan, J. Am. Chem. Soc., 98, 7460 (1976); https://doi.org/10.1021/ja00439a077.
S.S. Hall, A.M. Doweyko and F. Jordan, J. Am. Chem. Soc., 100, 5934 (1978); https://doi.org/10.1021/ja00486a054.
B. Arora, P.S. Pandey and M.N. Gupta, Tetrahedron Lett., 55, 3920 (2014); https://doi.org/10.1016/j.tetlet.2014.05.022.
M. Ogata and R. Sugihara, Int. Arch. Occup. Environ. Health, 42, 11 (1978); https://doi.org/10.1007/BF00385707.
C. Laane, Biocatalysis, 30, 80 (1987).
J.-P. Fu, N. Gao, Y. Yang, Z. Guan and Y.-H. He, J. Mol. Catal. B Enzym., 97, 1 (2013); https://doi.org/10.1016/j.molcatb.2013.06.016.
X.-Y. Chen, Y.-R. Liang, F.-L. Xu, Q. Wu and X.-F. Lin, J. Mol. Catal. B Enzym., 97, 18 (2013); https://doi.org/10.1016/j.molcatb.2013.07.012.
L. Jiang and H.-W. Yu, Biotechnol. Lett., 36, 99 (2014); https://doi.org/10.1007/s10529-013-1329-9.
S. Jung, J. Kim and S. Park, RSC Adv., 3, 2590 (2013); https://doi.org/10.1039/c2ra23333a.
M.M.H. Graf, U. Bren, D. Haltrich and C. Oostenbrink, J. Comput. Aided Mol. Des., 27, 295 (2013); https://doi.org/10.1007/s10822-013-9645-7.