Main Article Content

Abstract

The main aim of the present work was to design novel chalcone derivatives of azaindole towards COX-2 inhibition. The compounds were designed targeting the effective binding by substitution in the phenyl ring attached to the chalcone. Most of the compounds were found to possess good affinity towards the target. All the designed compounds were within the rule of 5 as predicted by Lipinski’s. Compounds with trimethoxy substitution in the phenyl ring possess good CDOCKER interaction energy. Among the 92 designed compounds substitution of methoxy, hydroxyl, amino group possess good interaction energy and hydrogen bonding.

Keywords

CDOCKER Cyclooxygenase Docking Inflammation

Article Details

How to Cite
Giles, D., & Saiprabha, V. (2018). Azaindole Derivatives as COX-2 Inhibitors: An in silico Approach. Asian Journal of Organic & Medicinal Chemistry, 3(2), 34–40. https://doi.org/10.14233/ajomc.2018.AJOMC-P111

References

  1. S. Basu, Novel Cyclooxygenase?Catalyzed Bioactive Prostaglandin F2? from Physiology to New Principles in Inflammation, Med. Res. Rev., 27, 435 (2007); https://doi.org/10.1002/med.20098.
  2. N.R. Ferreri, S.J. An and J.C. McGiff, Cyclooxygenase-2 Expression and Function in the Medullary Thick Ascending Limb, Am. J. Physiol., 277, F360 (1999).
  3. E.M. Martin and S.L. Jones, Inhibition of Microsomal Prostaglandin E-Synthase-1 (mPGES-1) Selectively Suppresses PGE2 in an in vitro Equine Inflammation Model, Vet. Immunol. Immunopathol., 192, 33 (2017); https://doi.org/10.1016/j.vetimm.2017.09.008.
  4. Y.R. Tran Dinh, A. Jomaa, J. Callebert, A.M. Reynier-Rebuffel, A. Tedgui, A. Savarit and R. Sercombe, Overexpression of Cyclooxyge-nase-2 in Rabbit Basilar Artery Endothelial Cells after Subarachnoid Hemorrhage, Neurosurgery, 48, 626 (2001); https://doi.org/10.1097/00006123-200103000-00037.
  5. A.M. Mohassab, H.A. Hassan, D. Abdelhamid, M. Abdel-Aziz, K.N. Dalby and T.S. Kaoud, Novel Quinoline Incorporating 1,2,4-Triazole/Oxime Hybrids: Synthesis, Molecular Docking, Anti-inflammatory, COX Inhibition, Ulceroginicity and Histopathological Investigations, Bioorg. Chem., 75, 242 (2017); https://doi.org/10.1016/j.bioorg.2017.09.018.
  6. H. Schroder, Nitric Oxide and Aspirin: A New Mediator for an Old Drug, Am. J. Ther., 16, 17 (2009); https://doi.org/10.1097/MJT.0b013e318164bd60.
  7. S.E. Kassab, M.A. Khedr, H.I. Ali and M.M. Abdalla, Discovery of New Indomethacin-Based Analogs with Potentially Selective Cyclooxyge-nase-2 Inhibition and Observed Diminishing to PGE2 Activities, Eur. J. Med. Chem., 141, 306 (2017); https://doi.org/10.1016/j.ejmech.2017.09.056.
  8. S. Hayashi, N. Ueno, A. Murase and J. Takada, Design, Synthesis and Structure-Activity Relationship Studies of Novel and Diverse Cyclooxy-genase-2 Inhibitors as Anti-Inflammatory Drugs, J. Enzyme Inhib. Med. Chem., 29, 846 (2014); https://doi.org/10.3109/14756366.2013.864650.
  9. L. Dhondt, M. Devreese, S. Croubels, S. De Baere, R. Haesendonck, T. Goessens, R. Gehring, P. De Backer and G. Antonissen, Comparative Population Pharmacokinetics and Absolute Oral Bioavailability of COX-2 Selective Inhibitors Celecoxib, Mavacoxib and Meloxicam in Cockatiels (Nymphicus hollandicus), Sci. Rep., 7, 12043 (2017); https://doi.org/10.1038/s41598-017-12159-z.
  10. B. Zhang, K. Jin, T. Jiang, L. Wang, S. Shen, Z. Luo, Y. Tuo, X. Liu, Y. Hu and Z. Pang, Celecoxib Normalizes the Tumor Microenvironment and Enhances Small Nanotherapeutics Delivery to A549 Tumors in Nude Mice, Sci. Rep., 7, 10071 (2017); https://doi.org/10.1038/s41598-017-09520-7.
  11. A. Aghazadeh-Habashi, W. Asghar and F. Jamali, Drug-Disease Inter-action: Effect of Inflammation and Nonsteroidal Anti-Inflammatory Drugs on Cytochrome P450 Metabolites of Arachidonic Acid, J. Pharm. Sci., 107, 756 (2017); https://doi.org/10.1016/j.xphs.2017.09.020.
  12. D. Riether, C. Harcken, H. Razavi, D. Kuzmich, T. Gilmore, J. Bentzien, E.J. Pack Jr., D. Souza, R.M. Nelson, A. Kukulka, T.N. Fadra, L. Zuvela-Jelaska, J. Pelletier, R. Dinallo, M. Panzenbeck, C. Torcellini, G.H. Nabozny and D.S. Thomson, Nonsteroidal Dissociated Glucocorticoid Agonists Containing Azaindoles As Steroid A-Ring Mimetics, J. Med. Chem., 53, 6681 (2010); https://doi.org/10.1021/jm100751q.
  13. J. Yi and H. Fang, Theoretical Investigation on the Water-Assisted Excited-State Proton Transfer of 7-Azaindole Derivatives: Substituent Effect, J. Mol. Model., 23, 312 (2017); https://doi.org/10.1007/s00894-017-3487-5.
  14. C. Barberis, N. Moorcroft, J. Pribish, E. Tserlin, A. Gross, M. Czekaj, M. Barrague, P. Erdman, T. Majid, J. Batchelor, M. Levit, A. Hebert, L. Shen, S. Moreno-Mazza and A. Wang, Discovery of N-substituted 7-Azaindoles as Pan-PIM Kinase Inhibitors – Lead Series Identification-Part II, Bioorg. Med. Chem. Lett., 27, 4735 (2017); https://doi.org/10.1016/j.bmcl.2017.08.068.
  15. C. Yang, X. Zhang, Y. Wang, Y. Yang, X. Liu, M. Deng, Y. Jia, Y. Ling, L. Meng and Y. Zhou, Discovery of a Novel Series of 7-Azaindole Scaffold Derivatives as PI3K Inhibitors with Potent Activity, ACS Med. Chem. Lett., 8, 875 (2017); https://doi.org/10.1021/acsmedchemlett.7b00222.
  16. G.M. Giblin, A. Billinton, M. Briggs, A.J. Brown, I.P. Chessell, N.M. Clayton, A.J. Eatherton, P. Goldsmith, C. Haslam, M.R. Johnson, W.L. Mitchell, A. Naylor, A. Perboni, B.P. Slingsby and A.W. Wilson, Discovery of 1-[4-(3-Chlorophenylamino)-1-methyl-1H-pyrrolo[3,2-c]-pyridin-7-yl]-1-morpholin-4-ylmethanone (GSK554418A), A Brain Penetrant 5-Azaindole CB2 Agonist for the Treatment of Chronic Pain, J. Med. Chem., 52, 5785 (2009); https://doi.org/10.1021/jm9009857.
  17. G.S. Hassan, S.M. Abou-Seri, G. Kamel and M.M. Ali, Celecoxib Analogs Bearing Benzofuran Moiety as Cyclooxygenase-2 Inhibitors: Design, Synthesis and Evaluation as Potential Anti-inflammatory Agents, Eur. J. Med. Chem., 76, 482 (2014); https://doi.org/10.1016/j.ejmech.2014.02.033.
  18. A. Manikandan, S. Ravichandran, K.I. Sathiyanarayanan and A. Sivakumar, Efficacy of Phenyl Quinoline Phenol Derivatives as COX-2 Inhibitors; An Approach to Emergent the Small Molecules as the Anti-inflammatory and Analgesic Therapeutics, Inflammopharmacology, 25, 621 (2017); https://doi.org/10.1007/s10787-017-0342-3.