Main Article Content

Abstract

Sulfenylindoles obtained by direct sulfenylation of indoles using diphenyl disulphide in the presence of catalytic amount of iodine in DMSO have been studied for aldose reductase inhibitory activity. As expected, different 3-sulfenylindoles derivatives that are synthesized exhibit good-to-excellent aldose reductase inhibitory activity.

Keywords

3-Sulfenylindoles Diphenyl disulphide Aldose reductase inhibitory activity Enzyme

Article Details

How to Cite
A. Dahan, Z., Kasa, A., Hussain, S., & Zubaidha, P. (2018). Aldose Reductase Inhibitory Activity Studies of Substituted 3-Sulfenylindoles. Asian Journal of Organic & Medicinal Chemistry, 3(3), 60–64. https://doi.org/10.14233/ajomc.2018.AJOMC-P98

References

  1. (a) J.-R. Weng, C.-H. Tsai, S.K. Kulp and C.-S. Chen, Indole-3-Carbinol as a Chemopreventive and Anti-Cancer Agent, Cancer Lett., 262, 153 (2008); https://doi.org/10.1016/j.canlet.2008.01.033. (b) G.C. Rieck and A.N. Fiander, Human Papillomavirus, Cervical Carcino-genesis and Chemoprevention with Indole Derivates-A Review of Pathomechanisms, Mol. Nutr. Food Res., 52, 105 (2008); https://doi.org/10.1002/mnfr.200700138. (c) A. Brancale and R. Silvestri, Indole, A Core Nucleus for Potent Inhi-bitors of Tubulin Polymerization, Med. Res. Rev., 27, 209 (2007); https://doi.org/10.1002/med.20080.
  2. G. La Regina, M.C. Edler, A. Brancale, S. Kandil, A. Coluccia, F. Piscitelli, E. Hamel, G. De Martino, R. Matesanz, J.F. Diaz, A.I. Scovassi, E. Prosperi, A. Lavecchia, E. Novellino, M. Artico and R. Silvestri, Arylthioindole Inhibitors of Tubulin Polymerization. 3. Biological Evaluation, Structure Activity Relationships and Molecular Modeling Studies, J. Med. Chem., 50, 2865 (2007); https://doi.org/10.1021/jm061479u.
  3. G. De Martino, M.C. Edler, G. La Regina, A. Coluccia, M.C. Barbera, D. Barrow, R.I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico and R. Silvestri, New Arylthioindoles: Potent Inhibitors of Tubulin Polymerization. 2. Structure-Activity Relationships and Molecular Modeling Studies, J. Med. Chem., 49, 947 (2006); https://doi.org/10.1021/jm050809s.
  4. R. Ragno, A. Coluccia, G. La Regina, G. De Martino, F. Piscitelli, A. Lavecchia, E. Novellino, A. Bergamini, C. Ciaprini, A. Sinistro, G. Maga, E. Crespan, M. Artico and R. Silvestri, Design, Molecular Modeling, Synthesis, and Anti-HIV-1 Activity of New Indolyl Aryl Sulfones: Novel Derivatives of the Indole-2-carboxamide, J. Med. Chem., 49, 3172 (2006); https://doi.org/10.1021/jm0512490.
  5. V.S.N. Ramakrishna, V.S. Shirsath, R.S. Kambhampati, S. Vishwakarma, V.N. Kandikere, S. Kota and V. Jasti, Thioether Derivatives as Functional 5-HT6 Ligands, PCT Int. Appl. WO 2007020653 (2007).
  6. C.D. Funk, Leukotriene Modifiers as Potential Therapeutics for Cardio-vascular Disease, Nat. Rev. Drug Discov., 4, 664 (2005); https://doi.org/10.1038/nrd1796.
  7. R.E. Armer, G.M. Wynne, C.R. Dorgan and P.D. Johnson, Compounds having CRTH2 Antagonist Activity, PCT Int. Appl. WO 2008012511 (2008).
  8. M. Brownlee, The Pathobiology of Diabetic Complications: A Unifying Mechanism, Diabetes, 54, 1615 (2005); https://doi.org/10.2337/diabetes.54.6.1615.
  9. M. Brownlee, Biochemistry and Molecular Cell Biology of Diabetic Complications, Nature, 414, 813 (2001); https://doi.org/10.1038/414813a.
  10. C. Yabe-Nishimura, Aldose Reductase in Glucose Toxicity: A Potential Target for the Prevention of Diabetic Complications, Pharmacol. Rev., 50, 21 (1998).
  11. J.H. Kinoshita, S. Fukushi, P. Kador and L. Merola, Aldose Reductase in Diabetic Complications of the Eye, Metabolism, 28, 462 (1979); https://doi.org/10.1016/0026-0495(79)90057-X.
  12. M. Chatzopoulou, P. Alexiou, E. Kotsampasakou and V.J. Demopoulos, Novel Aldose Reductase Inhibitors: A Patent Survey (2006 – Present), Expert Opin. Ther. Pat., 22, 1303 (2012); https://doi.org/10.1517/13543776.2012.726615.
  13. M. Lorenzi, The Polyol Pathway as a Mechanism for Diabetic Retino-pathy: Attractive, Elusive and Resilient, Exp. Diabetes Res., 61038 (2007); https://doi.org/10.1155/2007/61038.
  14. B. Crosas, D.J. Hyndman, O. Gallego, S. Martras, X. Pares, T.G. Flynn and J. Farrés, Human Aldose Reductase and Human Small Intestine Aldose Reductase are Efficient Retinal Reductases: Consequences for Retinoid Metabolism, Biochem. J., 373, 973 (2003); https://doi.org/10.1042/bj20021818.
  15. S. Suzen and E. Buyukbingol, Recent Studies of Aldose Reductase Enzyme Inhibition for Diabetic Complications, Curr. Med. Chem., 10, 1329 (2003); https://doi.org/10.2174/0929867033457377.
  16. P.J. Oates and B.L. Mylari, Aldose Reductase Inhibitors: Therapeutic Implications for Diabetic Complications, Expert Opin. Investig. Drugs, 8, 2095 (1999); https://doi.org/10.1517/13543784.8.12.2095.
  17. A. Ramunno, S. Cosconati, S. Sartini, V. Maglio, S. Angiuoli, V. La Pietra, S. Di Maro, M. Giustiniano, C. La Motta, F. Da Settimo, L. Marinelli and E. Novellino, Progresses in the Pursuit of Aldose Reductase Inhibitors: The Structure-Based Lead Optimization Step, Eur. J. Med. Chem., 51, 216 (2012); https://doi.org/10.1016/j.ejmech.2012.02.045.
  18. S. Hayman, J.H.Kinoshita, J. Biol. Chem., 240, 877 (1965).