Main Article Content

Abstract

Multiwalled carbon nanotubes (MWCNTs) functionalization was carried out by using trimethoprim. A comparative study showed that functionalized MWCNTs are more active than trimethoprim. These results are confirmed with Fourier transform infrared spectroscopy and scanning electron microscope techniques. Investigation of prepared functionalized MWCNTs with the diameter range performed on three bacterial samples P. aeroginosa, K. pneumoniae and P. mirabilis. The results indicated that only K. pneumoniae was affected by functionalized carbon nanotubes as compared to trimethoprim

Keywords

Biological activity Functionalized carbon nanotubes Trimethoprim Scanning electron microscope Fourier-transform infrared spectroscopy

Article Details

How to Cite
Abbas Alwan, H., Falih Al-Mamori, F., Dawood Salman, H., Muslim Kamil, A., & H. Hussein, F. (2018). Biological Activity of Functionalized Carbon Nanotubes by Trimethoprim. Asian Journal of Organic & Medicinal Chemistry, 3(4), 204–207. https://doi.org/10.14233/ajomc.2018.AJOMC-P137

References

  1. S. Iijima, Helical Microtubules of Graphitic Carbon, Nature, 354, 56 (1991); https://doi.org/10.1038/354056a0.
  2. W. Zhou, C. Rutherglen and P. Burke, Wafer Scale Synthesis of Dense Aligned Arrays of Single-Walled Carbon Nanotubes, Nano Res., 1, 158 (2008); https://doi.org/10.1007/s12274-008-8012-9.
  3. H. Ago, K. Petritsch, M.S.P. Shaffer, A.H. Windle and R.H. Friend, Composites of Carbon Nanotubes and Conjugated Polymers for Photo-voltaic Devices, Adv. Mater., 11, 1281 (1999); https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6.
  4. A.M. Jassm, F.H. Hussein, F.H. Abdulrazzak, A.F. Alkaim and B.A. Joda, Synthesis and Characterization of Carbon Nanotubes by Modified Flame Fragments Deposition Method, Asian J. Chem., 29, 2804 (2017); https://doi.org/10.14233/ajchem.2017.20994.
  5. A. Javey, J. Guo, Q. Wang, M. Lundstrom and H.J. Dai, Ballistic Carbon Nanotube Field-Effect Transistors, Nature, 424, 654 (2003); https://doi.org/10.1038/nature01797.
  6. Q. Cao and J.A. Rogers, Random Networks and Aligned Arrays of Single-Walled Carbon Nanotubes for Electronic Device Applications, Nano Res., 1, 259 (2008); https://doi.org/10.1007/s12274-008-8033-4.
  7. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell and H.J. Dai, Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties, Science, 283, 512 (1999); https://doi.org/10.1126/science.283.5401.512.
  8. V.K. Prajapati, K. Awasthi, S. Gautam, T.P. Yadav, M. Rai, O.N. Srivastava and S. Sundar, Targeted Killing of Leishmania donovani in vivo and in vitro with Amphotericin B Attached to Functionalized Carbon Nanotubes, J. Antimicrob. Chemother., 66, 874 (2011); https://doi.org/10.1093/jac/dkr002.
  9. S. Kang, M. Herzberg, D.F. Rodrigues and M. Elimelech, Antibacterial Effects of Carbon Nanotubes: Size Does Matter, Langmuir, 24, 6409 (2008); https://doi.org/10.1021/la800951v.
  10. C. Buzea, I. Pacheco and K. Robbie, Nanomaterials and Nanoparticles: Sources and Toxicity, Biointerphases, 2, MR17 (2007); https://doi.org/10.1116/1.2815690.
  11. M.J. Hajipour, K.M. Fromm, A. Akbar Ashkarran, D.J. de Aberasturi, I.R. Larramendi, T. Rojo, V. Serpooshan, W.J. Parak and M. Mahmoudi, Antibacterial Properties of Nanoparticles, Trends Biotechnol., 30, 499 (2012); https://doi.org/10.1016/j.tibtech.2012.06.004.
  12. S. Gurunathan, J.W. Han, A.A. Dayem, V. Eppakayala and J.H. Kim, Oxidative Stress-Mediated Antibacterial Activity of Graphene Oxide and Reduced Graphene Oxide in Pseudomonas aeruginosa, Int. J. Nanomed., 7, 5901 (2012); https://doi.org/10.2147/IJN.S37397.
  13. S.M. Dizaj, A. Mennati, S. Jafari, K. Khezri and K. Adibkia, Anti-microbial Activity of Carbon-Based Nanoparticles, Adv. Pharm. Bull., 5, 19 (2015); https://doi.org/10.5681/apb.2015.003.
  14. A. Manke, L. Wang and Y. Rojanasakul, Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity, BioMed Res. Int., 2013, 1 (2013); https://doi.org/10.1155/2013/942916.
  15. S. Kang, M. Pinault, L.D. Pfefferle and M. Elimelech, Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity, Langmuir, 23, 8670 (2007); https://doi.org/10.1021/la701067r.
  16. A. Amiri, H.Z. Zardini, M. Shanbedi, M. Maghrebi, M. Baniadam and B. Tolueinia, Efficient Method for Functionalization of Carbon Nano-tubes by Lysine and Improved Antimicrobial Activity and Water-Dispersion, Mater. Lett., 72, 153 (2012); https://doi.org/10.1016/j.matlet.2011.12.114.
  17. J.F. MacFaddin, Biochemical Tests for Identification of Medical Bacteria, Lippincott Williams and Wilkins: USA, edn 3 (2000).
  18. J.G. Collee, A.G. Fraser, B.P. Marmiom and A. Simmon, Mackie and McCartney Practical Medical Microbiology, Churchill Livingstone Inc.: USA, edn 4 (1996), .
  19. C. Perez, M. Pauli and P. Bazevque, An Antibiotic Assay by Agar Well Diffusion Method, Acta Biol. Med. Exp., 15, 113 (1990).
  20. NCCLS (National Committee for Clinical Laboratory Standards), Methods for Dilution Antimicrobial Susceptibility Tests of Bacteria that Grow Aerobically; Approved Standard M100-S12, Wayne: PA (2002).
  21. A.M. Allahverdiyev, E.S. Abamor, M. Bagirova and M. Rafailovich, Antimicrobial Effects of TiO2 and Ag2O Nanoparticles Against Drug-Resistant Bacteria and Leishmania parasites, Future Microbiol., 6, 933 (2011); https://doi.org/10.2217/fmb.11.78.
  22. P. Cornejo-Juarez, D. Vilar-Compte, C. Perez-Jimenez, S.A. Ñamendys-Silva, S. Sandoval-Hernández and P. Volkow-Fernández, The Impact of Hospital-Acquired Infections with Multidrug-Resistant Bacteria in an Oncology Intensive Care Unit, Int. J. Infect. Dis., 31, 31 (2015); https://doi.org/10.1016/j.ijid.2014.12.022.
  23. L.R. Arias and L. Yang, Inactivation of Bacterial Pathogens by Carbon Nanotubes in Suspensions, Langmuir, 25, 3003 (2009); https://doi.org/10.1021/la802769m.
  24. A. Brolund, M. Sundqvist, G. Kahlmeter and M. Grape, Molecular Characterisation of Trimethoprim Resistance in Escherichia coli and Klebsiella pneumoniae during a Two Year Intervention on Trimethoprim Use, PLoS One, 5, e9233 (2010); https://doi.org/10.1371/journal.pone.0009233.
  25. J.G. Yu, L.Y. Yu, H. Yang, Q. Liu, X.H. Chen, X.Y. Jiang, X.Q. Chen and F.P. Jiao, Graphene Nanosheets as Novel Adsorbents in Adsorption, Preconcentration and Removal of Gases, Organic Compounds and Metal Ions, Sci. Total Environ., 502, 70 (2015); https://doi.org/10.1016/j.scitotenv.2014.08.077.
  26. T. Akasaka and F. Watari, Capture of Bacteria by Flexible Carbon Nanotubes, Acta Biomater., 5, 607 (2009); https://doi.org/10.1016/j.actbio.2008.08.014.