Main Article Content

Abstract

The synthesis of some pyrimidine derivatives was achieved by condensation of 2-hydroxyacetophenone and cinnamic acid as starting materials through 1,3-diketones as intermediates. The resulting diketones have been converted into substituted pyrimidines by reaction with urea, thiourea and guanidine in the presence of trace of triethylamine and pyridine in calculated quantity. The synthesized compounds were characterized by their physical properties, NMR and LC-mass spectroscopic studies and also screened for their anti-inflammatory activity.

Keywords

Pyrimidines Cinamoyloxyacetophenones Triethylamine Pyridine Anti-inflammatory activity Paw edema 1,3-Diketones

Article Details

How to Cite
Priyadarsini, P., Madhava Rao, V., & Venkata Rao, C. (2019). Synthesis, Characterization and Anti-inflammatory Activity of New Pyrimidines. Asian Journal of Organic & Medicinal Chemistry, 4(1), 46–50. https://doi.org/10.14233/ajomc.2019.AJOMC-P178

References

  1. B. Ramesh and C.M. Bhalgat, Novel Dihydropyrimidines and its Pyrazole Derivatives: Synthesis and Pharmacological Screening, Eur. J. Med. Chem., 46, 1882 (2011); https://doi.org/10.1016/j.ejmech.2011.02.052.
  2. B. Ramesh, D.R. Bharathi, H.S. Basavaraj and K.V. Jayadevaiah, Synthesis and Antimicrobial Activity of Tri-Substituted 1,6-Dihydro-pyrimidines, Asian J. Chem., 20, 2591 (2008).
  3. M.S. Mohamed, S.M. Awad and N.M. Ahmed, Synthesis and Anti-microbial Evaluation of Some 6-Aryl-5-cyano-2-thiouracil Derivatives, Acta Pharm., 61, 171 (2011); https://doi.org/10.2478/v10007-011-0019-1.
  4. S.B. Mohan, B.V. Ravi Kumar, S.C. Dinda, D. Naik, S.P. Seenivasan, V. Kumar, D.N. Rana and P.S. Brahmkshatriya, Microwave-Assisted Synthesis, Molecular Docking and Antitubercular Activity of 1,2,3,4-Tetrahydropyrimidine-5-Carbonitrile Derivatives, Bioorg. Med. Chem. Lett., 22, 7539 (2012); https://doi.org/10.1016/j.bmcl.2012.10.032.
  5. O.A. Fathalla, I.F. Zeid, M.E. Haiba, A.M. Soliman, S.I. Abd-Elmoez and W.S. El-Serwy, Synthesis, Antibacterial and Anticancer Evaluation of Some Pyrimidine Derivatives, World J. Chem., 4, 127 (2009).
  6. M. Díaz-Gavilán, J.A. Gómez-Vidal, F. Rodríguez-Serrano, J.A. Marchal, O. Caba, A. Aránega, M.A. Gallo, A. Espinosa and J.M. Campos, Anti-cancer Activity of (1,2,3,5-Tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and -Purines Against the MCF-7 Cell Line: Preliminary cDNA Microarray Studies, Bioorg. Med. Chem. Lett., 18, 1457 (2008); https://doi.org/10.1016/j.bmcl.2007.12.070.
  7. A. Verma, L. Sahu, N. Chaudhary, T. Dutta, D. Dewangan and D.K. Tripathi, A Review: Pyrimidine Their Chemistry and Pharmacological Potentials, Asian J. Biochem. Pharm. Res., 2, 2231 (2012).
  8. L. Bettendorff, B. Wirtzfeld, A.F. Makarchikov, G. Mazzucchelli, M. Frédérich, T. Gigliobianco, M. Gangolf, E. De Pauw, L. Angenot and P. Wins, Discovery of a Natural Thiamine Adenine Nucleotide, Nat. Chem. Biol., 3, 211 (2007); https://doi.org/10.1038/nchembio867.
  9. J. Zempleni, J.R. Galloway and D.B. McCormick, Am. J. Clin. Nutr., 63, 54 (1996); https://doi.org/10.1093/ajcn/63.1.54.
  10. S.W. Bailey and J.E. Ayling, Pharmacokinetics of Orally and Intra-venously Administered Riboflavin in Healthy Humans, Proc. Natl. Acad. Sci. USA, 106, 15424 (2009); https://doi.org/10.1073/pnas.0902072106.
  11. D.S. Bose, M. Sudharshan and S.W. Chavhan, New Environmentally Benign Protocol for the Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones: Practical Access to Mitotic Kinesin EG5 Inhibitor Monastrol, ARKIVOC, 228 (2005); https://doi.org/10.3998/ark.5550190.0006.325.
  12. A.D. Baldev, K.B. Vyas, K.B. Patel and K.S. Nimavat, Synthesis of 1,2,3,4-Tetrahydropyrimidine Derivatives as an Antimicrobial Agent, J. Chem. Pharm. Res., 4, 2972 (2012).
  13. R. Komastu, H. Sasabe and J. Kido, Recent Progress of Pyrimidine Derivatives for High-Performance Organic Light-Emitting Devices, J. Photon. Energy, 8, 032108 (2018); https://doi.org/10.1117/1.JPE.8.032108.
  14. K. Undheim and T. Benneche, eds.: A. R. Katritzky, C. W. Rees, E. F. V. Scriven, A. McKillop, Comprehensive Heterocyclic Chemistry II, Pergamon: Oxford, vol. 6, pp. 93-231 (1996).
  15. I.M. Lagoja, Pyrimidine as Constituent of Natural Biologically Active Compounds, Chem. Biodivers., 2, 1 (2005); https://doi.org/10.1002/cbdv.200490173.
  16. J.P. Michael, Quinoline, Quinazoline and Acridone Alkaloids, Nat. Prod. Rep., 22, 627 (2005); https://doi.org/10.1039/b413750g.
  17. P. Priyadarsini, B. Ujwala, C. Venkata Rao and V. Madhava Rao, Synthesis and Antimicrobial Activity of Some Novel Pyrazoles, Der Pharm. Lett., 4, 1123 (2012).
  18. A.K. Dhingra, B. Chopra, R. Dass and S.K. Mittal, Synthesis and Anti-Inflammatory Activity of Some O-Propargylated-N-acetylpyrazole Derived from 1,3-Diarylpropenones, Int. J. Med. Chem., 2016, Article ID 3156593 (2016); https://doi.org/10.1155/2016/3156593