Main Article Content

Abstract

In present study, magnetically separable cobalt ferrite nanoparticles (CoFe2O4·NPs) have been prepared by low cost chemical precipitation method and reported as reusable, proficient heterogeneous catalyst for the synthesis of 1-oxo-hexahydroxanthenes among other ferrites. The structural and morphological studies by X-ray diffraction and scanning electron microscopy confirmed the formation of CoFe2O4 nanoparticles. The current protocol evaluated a proficient catalyst for reaction between various salicylaldehydes and 1,3-diketones. The ambient reaction conditions, shorter reaction time, good to excellent yields of the products, ease of purification of the products and reusa-bility of catalyst up to five catalytic cycles without significant loss of catalytic activity making the current protocol promising for its practical application.

Keywords

Ferrite nanoparticles 1-Oxohexahydroxanthenes Green solvents

Article Details

How to Cite
Kukade, M., Gavade, N., Kadam, A., Chandane, W., Garadkar, K., & Bodake, A. (2019). Magnetically Retrievable Cobalt Ferrite Nanoparticles as Heterogeneous Catalyst for Synthesis of 1-Oxo-hexahydroxanthenes. Asian Journal of Organic & Medicinal Chemistry, 4(2), 113–120. https://doi.org/10.14233/ajomc.2019.AJOMC-P207

References

  1. R.C. Cioc, E. Ruijter and R.V.A. Orru, Multicomponent Reactions: Advanced Tools for Sustainable Organic Synthesis, Green Chem., 16, 2958 (2014); https://doi.org/10.1039/C4GC00013G.
  2. N.T. Patil and Y. Yamamoto, Coinage Metal-Assisted Synthesis of Hetero-cycles, Chem. Rev., 108, 3395 (2008); https://doi.org/10.1021/cr050041j.
  3. X. Chen, T. Pradhan, F. Wang, J.S. Kim and J. Yoon, Fluorescent Chemosensors Based on Spiroring-Opening of Xanthenes and Related Derivatives, Chem. Rev., 112, 1910 (2012); https://doi.org/10.1021/cr200201z.
  4. R. Breslow and U. Maitra, On the Origin of Product Selectivity in Aqueous Diels-Aalder Reactions, Tetrahedron Lett., 25, 1239 (1984); https://doi.org/10.1016/S0040-4039(01)80122-2.
  5. R.C. Hunter and T.J. Beveridge, Application of a pH-Sensitive Fluoro-probe (C-SNARF-4) for pH Microenvironment Analysis in Pseudomonas aeruginosa Biofilms, Appl. Environ. Microbiol., 71, 2501 (2005); https://doi.org/10.1128/AEM.71.5.2501-2510.2005.
  6. W.S. Johnson, Biomimetic Polyene Cyclizations, Angew. Chem. Int. Ed. Engl., 15, 9 (1976); https://doi.org/10.1002/anie.197600091.
  7. J.M. Khurana, D. Magoo, K. Aggarwal, N. Aggarwal, R. Kumar and C. Srivastava, Synthesis of Novel 12-Aryl-8,9,10,12-Tetrahydrobenzo-[a]zanthene-11-thiones and Evaluation of their Biocidal Effects, Eur. J. Med. Chem., 58, 470 (2012); https://doi.org/10.1016/j.ejmech.2012.10.025.
  8. J.-M. An, M.-H. Yan, Z.-Y. Yang, T.-R. Li and Q.-X. Zhou, A Turn-On Fluorescent Sensor for Zn(II) Based on Fluorescein-Coumarin Conjugate, Dyes Pigments, 99, 1 (2013); https://doi.org/10.1016/j.dyepig.2013.04.018.
  9. S. Woo, J. Jung, C. Lee, Y. Kwon and Y. Na, Synthesis of New Xanthone Analogues and their Biological Activity Test-Cytotoxicity, Topoisome-rase II Inhibition and DNA Cross-Linking Study, Bioorg. Med. Chem. Lett., 17, 1163 (2007); https://doi.org/10.1016/j.bmcl.2006.12.030.
  10. J. Asano, K. Chiba, M. Tada and T. Yoshii, Cytotoxic Xanthones from Garcinia hanburyi, Phytochemistry, 41, 815 (1996); https://doi.org/10.1016/0031-9422(95)00682-6.
  11. K. Matsumoto, Y. Akao, K. Ohguchi, T. Ito, T. Tanaka, M. Iinuma and Y. Nozawa, Xanthones Induce Cell-cycle Arrest and Apoptosis in Human Colon Cancer DLD-1 Cells, Bioorg. Med. Chem., 13, 6064 (2005); https://doi.org/10.1016/j.bmc.2005.06.065.
  12. Y. Akao, Y. Nakagawa and Y. Nozawa, Anti-Cancer Effects of Xanthones from Pericarps of Mangosteen, Int. J. Mol. Sci., 9, 355 (2008); https://doi.org/10.3390/ijms9030355.
  13. D.A.G. Cortez, B.A.A. Filho, C.V. Nakamura, B.P.D. Filho, A. Marston and K. Hostettmann, Antibacterial Activity of a Biphenyl and Xanthones from Kielmeyera coriacea, Pharm. Biol., 40, 485 (2002); https://doi.org/10.1076/phbi.40.7.485.14687.
  14. G. Gopalakrishnan, B. Banumathi and G. Suresh, Evaluation of the Antifungal Activity of Natural Xanthones from Garcinia mangostana and Their Synthetic Derivatives, J. Nat. Prod., 60, 519 (1997); https://doi.org/10.1021/np970165u.
  15. J.X. Kelly, R. Winter, D.H. Peyton, D.J. Hinrichs and M. Riscoe, Optimization of Xanthones for Antimalarial Activity: The 3,6-Bis-w-Diethylaminoalkoxyxanthone Series, Antimicrob. Agents Chemother., 46, 144 (2002); https://doi.org/10.1128/AAC.46.1.144-150.2002.
  16. V.K. Dua, G. Verma and A.P. Dash, in vitro Antiprotozoal Activity of Some Xanthones Isolated from the Roots of Andrographis paniculata, Phytother. Res., 23, 126 (2009); https://doi.org/10.1002/ptr.2556.
  17. X.-S. Wang, D.-Q. Shi, Y.-L. Li, H. Chen, X.-Y. Wei and Z.-M. Zong, A Clean Synthesis of 1-Oxo-hexahydroxanthene Derivatives in Aqueous Media Catalyzed by TEBA, Synth. Commun., 35, 97 (2005); https://doi.org/10.1081/SCC-200046510.
  18. R.B. Herbert, The Biosynthesis of Plant Alkaloids and Nitrogenous Microbial Metabolites, Nat. Prod. Rep., 8, 185 (1991); https://doi.org/10.1039/np9910800185.
  19. D.M. Pore, T.S. Shaikh, K.A. Undale and D.S. Gaikwad, A Green Protocol for Catalyst-Free Synthesis of 1-Oxo-Hexahydroxanthenes in Aqueous Medium, C.R. Chim., 13, 1429 (2010); https://doi.org/10.1016/j.crci.2010.06.015.
  20. F. He, P. Li, Y. Gu and G. Li, Glycerol as a Promoting Medium for Electrophilic Activation of Aldehydes: Catalyst-Free Synthesis of Di-(indolyl)methanes, Xanthene-1,8(2H)-diones and 1-Oxo-Hexahydroxan-thenes, Green Chem., 11, 1767 (2009); https://doi.org/10.1039/b916015a.
  21. D. Shi, Y. Wang, Z. Lu and G. Dai, Condensation of Aromatic Aldehydes with Acidic Methylene Compounds without Catalyst, Synth. Commun., 30, 713 (2000); https://doi.org/10.1080/00397910008087374.
  22. G. Sabitha, K. Arundhathi, K. Sudhakar, B.S. Sastry and J.S. Yadav, CeCl3·7H2O-Catalyzed Synthesis of 1-Oxo-hexahydroxanthene Derivatives in Aqueous Media, Synth. Commun., 38, 3439 (2008); https://doi.org/10.1080/00397910802154253.
  23. N. Sato, M. Jitsuoka, T. Shibata, T. Hirohashi, K. Nonoshita, M. Moriya, Y. Haga, A. Sakuraba, A.M. Ando, T. Ohe, H. Iwaasa, A. Gomori, A. Ishihara, A. Kanatani and T. Fukami, (9S)-9-(2-Hydroxy-4,4-dimethyl-6-oxo-1-cyclohexen-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1H-xanthen-1-one, a Selective and Orally Active Neuropeptide Y Y5 Receptor Antagonist, J. Med. Chem., 51, 4765 (2008); https://doi.org/10.1021/jm8003587.
  24. P. Zhang, Y.-D. Yu and Z.-H. Zhang, 2,4,6-Trichloro-1,3,5-triazine as an Efficient Catalyst for Synthesis of Benzopyran Derivatives under Solvent-Free Conditions, Synth. Commun., 38, 4474 (2008); https://doi.org/10.1080/00397910802369604.
  25. K.M. Khan, I. Khan, S. Perveen and M.I. Malik, A Rapid and Efficient CsF Catalyzed Tandem Knoevenagel-Michael Reaction, J. Fluor. Chem., 158, 1 (2014); https://doi.org/10.1016/j.jfluchem.2013.11.010.
  26. D. Prasad, A. Preetam and M. Nath, L-Proline-Accelerated, Eco-Friendly Synthesis of 9-Substituted-2,3,4,9-Tetrahydro-1H-Xanthen-1-Ones under Mild Conditions, C.R. Chim., 16, 1153 (2013); https://doi.org/10.1016/j.crci.2013.05.011.
  27. L. Nagarapu, S. Karnakanti, R. Bantu and B. Sridhar, Efficient, High-Yield Protocol for the One-Pot Synthesis of Benzopyran Derivatives Catalyzed by p-TSA in Aqueous Media, Synth. Commun., 42, 967 (2012); https://doi.org/10.1080/00397911.2010.533804.
  28. M. Tajbakhsh, M. Heidary, R. Hosseinzadeh and M.A. Amiri, FeCl3· 6H2O as a Green and Readily Available Catalyst for the Synthesis of 1-Oxo-Hexahydroxanthenes by the Condensation of Salicylaldehydes with 1,3-Diketones in Aqueous Media, Tetrahedron Lett., 57, 141 (2016); https://doi.org/10.1016/j.tetlet.2015.11.088.
  29. R.V. Kupwade, K.S. Pandit, U.V. Desai, M.A. Kulkarni and P.P. Wadgaonkar, Diethylamine-Catalyzed Environmentally Benign Synthesis of 1-Oxo-Hexahydroxanthenes and Bis-Coumarins at Ambient Temperature, Res. Chem. Intermed., 42, 6313 (2016); https://doi.org/10.1007/s11164-016-2464-4.
  30. B.S. Kumar, J.V. Madhav, S.V. Laxmi, B. Rajitha, Y.T. Reddy, P.N. Reddy and P.A. Crooks, Cellulose Sulfuric Acid: An Efficient Biodegradable and Recyclable Solid Acid Catalyst for the Synthesis of 1-Oxo-hexa-hydroxanthene, Synth. Commun., 41, 1719 (2011); https://doi.org/10.1080/00397911.2010.492076.
  31. T.R. Mandlimath, B. Umamahesh and K.I. Sathiyanarayanan, Rapid One Pot Synthesis of Xanthene Derivatives by an Efficient and Reusable Nano-ZnAl2O4–An Insight into a New Process, J. Mol. Catal. A Chem., 391, 198 (2014); https://doi.org/10.1016/j.molcata.2014.04.030.
  32. M. Tajbakhsh, M. Heidary and R. Hosseinzadeh, Nano Fe/NaY Zeolite: An Efficient and Reusable Solid-Supported Catalyst for Synthesis of 1-Oxo-Hexahydroxanthene and Tetraketone Derivatives, Res. Chem. Intermed., 42, 1425 (2016); https://doi.org/10.1007/s11164-015-2094-2.
  33. J.M. Thomas and W.J. Thomas, Principle and Practice of Heterogeneous Catalysis, VCH, Weinheim (1997).
  34. H. Kn¨ozinger, J. Vertkamp and G. Ertl, Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, p. 25 (1997).
  35. R.B.N. Baig and R.S. Varma, Magnetically Retrievable Catalysts for Organic Synthesis, Chem. Commun., 49, 752 (2013); https://doi.org/10.1039/C2CC35663E.
  36. M.B. Gawande, A.K. Rathi, P.S. Branco and R.S. Varma, Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis, Appl. Sci., 3, 656 (2013); https://doi.org/10.3390/app3040656.
  37. D. Wang and D. Astruc, Fast-Growing Field of Magnetically Recyclable Nanocatalysts, Chem. Rev., 114, 6949 (2014); https://doi.org/10.1021/cr500134h.
  38. A.M. Kulkarni, U.V. Desai, K.S. Pandit, M.A. Kulkarni and P.P. Wadgaonkar, Nickel Ferrite Nanoparticles-Hydrogen Peroxide: A Green Catalyst-Oxidant Combination in Chemoselective Oxidation of Thiols to Disulfides and Sulfides to Sulfoxides, RSC Adv., 4, 36702 (2014); https://doi.org/10.1039/C4RA04095C.
  39. A. Dandia, A.K. Jain and S. Sharma, Nanoparticles as a Highly Efficient and Magnetically Recoverable Catalyst for the Synthesis of Medicinally Privileged Spiropyrimidine Scaffolds, RSC Adv., 3, 2924 (2013); https://doi.org/10.1039/c2ra22477a.
  40. B. Sreedhar, A.S. Kumar and P.S. Reddy, Magnetically Separable Fe3O4 Nanoparticles: An Efficient Catalyst for the Synthesis of Propargylamines, Tetrahedron Lett., 51, 1891 (2010); https://doi.org/10.1016/j.tetlet.2010.02.016.
  41. Y. Zhang, Z. Yang, D. Yin, Y. Liu, C.L. Fei, R. Xiong, J. Shi and G.L. Yan, Composition and Magnetic Properties of Cobalt Ferrite Nano-Particles Prepared by the Co-Precipitation Method, J. Magn. Magn. Mater., 322, 3470 (2010); https://doi.org/10.1016/j.jmmm.2010.06.047.