Main Article Content

Abstract

A series of new 6-(2-oxo-3-[(4-arylpiperazino)carbonyl]-2H-6-chromenyl-methyl)-3-[(4- arylpiperazino)carbonyl]-2H-2-chromenone 9(a-j) have been synthesized and tested for their antibacterial activity against human pathogenic strains. The antibacterial evaluation data revealed that the compounds containing 4-methoxyphenyl, 4-fluorophenyl, 4-nitrophenyl and 4-hydroxyphenyl moieties at 4-position of the piperazine ring exhibited potent inhibitory activity towards all the tested bacterial strains. Further, the compounds containing phenyl and 4-methylphenyl moieties showed good activity towards P. aeruginosa and C. violaceum. The 4-nitrophenyl moiety also showed potent activity towards B. subtilis and B. sphaericus.

Keywords

Methylene-bis-coumarin Piperazine Antibacterial activity

Article Details

How to Cite
Nagaraj, A., Srinivas, S., Ramesh Naik, P., & Neelofer, R. (2019). Synthesis and Antibacterial Study of Novel Piperazine Linked Methylene-bis-Coumarins. Asian Journal of Organic & Medicinal Chemistry, 4(2), 101–108. https://doi.org/10.14233/ajomc.2019.AJOMC-P177

References

  1. A.R. Katritzky, Heterocyclic Chemistry: An Academic Subject of Immense Industrial Importance, Chem. Heterocycl. Compd., 28, 241 (1992); https://doi.org/10.1007/BF00529362.
  2. M.G. Valverde and T. Torroba, Sulfur-Nitrogen Heterocycles, Molecules, 10, 318 (2005); https://doi.org/10.3390/10020318.
  3. M.A. Ghannoum, Candida: A Causative Agent of an Emerging Infection, J. Invest. Dermatol., 6, 188 (2001); https://doi.org/10.1046/j.0022-202x.2001.00047.x.
  4. W.O. Foye and L. Thomas, Foey’s Principles of Medicinal Chemistry, vol. 6, p. 36 (2007).
  5. K. Singh, H.H. Siddiqui, P. Shakya, P. Bagga, A. Kumar, M. Khalid, M. Arif and S. Alok, Piperazine-A Biologically Active Scaffold, Int. J. Pharm. Sci. Res., 6, 4145 (2015).
  6. U. Müller-Ladner, Rheumatoide Arthritis 2015: Erfolge und Herausfor-derungen, Drug Res., 65, 5 (2015); https://doi.org/10.1055/s-0035-1558060.
  7. R.M. Sanchez-Alonso, E. Ravina, L. Santana, G. Garcia-Mera, M. Sanmartin and P. Baltar, Piperazine Derivatives of Benzimidazole as Potential Anthelmintics. Part 1: Synthesis and Activity of Methyl-5-(4-substituted piperazin-1-yl)benzimidazole-2-carbamates, Pharmazie, 44, 606 (1989).
  8. A.K. Rathi, R. Syed, H.S. Shin and R.V. Patel, Piperazine Derivatives for Therapeutic Use: A Patent Review (2010-Present), Expert Opin. Ther. Pat., 26, 777 (2016); https://doi.org/10.1080/13543776.2016.1189902.
  9. E.E. Gurdal, E. Buclulgan, I. Durmaz, R. Cetin-Atalay and M. Yarim, Synthesis and Anticancer Activity Evaluation of Some Benzothiazole-Piperazine Derivatives, Anticancer. Agents Med. Chem., 15, 382 (2015); https://doi.org/10.2174/1871520615666141216151101.
  10. K. Natsuka, H. Nakamura, H. Uno and S. Umemoto, 1-Substituted 4-(1,2-Diphenylethyl)piperazine Derivatives and their Analgesic Activities. 1, J. Med. Chem., 18, 1240 (1975); https://doi.org/10.1021/jm00246a014.
  11. Z.S. Gu, Y. Xiao, Q.W. Zhang and J.Q. Li, Synthesis and Antidepressant Activity of a Series of Arylalkanol and Aralkyl Piperazine Derivatives Targeting SSRI/5-HT1A/5-HT7, Bioorg. Med. Chem. Lett., 27, 5420 (2017); https://doi.org/10.1016/j.bmcl.2017.11.007.
  12. J.S. New, J.P. Yevich, D.L. Temple, K.B. New, S.M. Gross, R.F. Schlemmer, M.S. Eison, D.P. Taylor and L.A. Riblet, Atypical Antipsychotic Agents: Patterns of Activity in a Series of 3-Substituted 2-Pyridinyl-1-piperazine Derivatives, J. Med. Chem., 31, 618 (1988); https://doi.org/10.1021/jm00398a021.
  13. G. Le Bihan, F. Rondu, A. Pele-Tounian, X. Wang, S. Lidy, E. Touboul, A. Lamouri, G. Dive, J. Huet, B. Pfeiffer, P. Renard, B. Guardiola-Lemaitre, D. Manechez, L. Penicaud, A. Ktorza and J.J. Godfroid, Design and Synthesis of Imidazoline Derivatives Active on Glucose Homeostasis in a Rat Model of Type II Diabetes. 2. Syntheses and Biological Activities of 1,4-Dialkyl-, 1,4-Dibenzyl- and 1-Benzyl-4-alkyl-2-(4¢,5¢-dihydro-1¢H-imidazol-2¢-yl)piperazines and Isosteric Analogues of Imidazoline, J. Med. Chem., 42, 1587 (1999); https://doi.org/10.1021/jm981099b.
  14. M. Abou-Gharbia, J.A. Moyer, S.T. Nielsen, M. Webb and U. Patel, New Antihistamines: Substituted Piperazine and Piperidine Derivatives as Novel H1-Antagonists, J. Med. Chem., 38, 4026 (1995); https://doi.org/10.1021/jm00020a018.
  15. G.A. Idrees, G.E.-D.A. Abuo-Rahma, O.M. Aly and M.F. Radwan, Design, Synthesis and Hypolipidemic Activity of Novel 2-(m-Tolyloxy) isobutyric Acid Derivatives, Eur. J. Med. Chem., 44, 2679 (2009); https://doi.org/10.1016/j.ejmech.2008.12.009.
  16. C.P. Meher, A.M. Rao and M. Omar, Piperazine–Pyrazine and their Multiple Biological Activities, Asian J. Pharm. Sci. Res., 3, 43 (2013).
  17. K. Mukai, K. Okabe and H. Hosose, Synthesis and Stopped-Flow Investigation of Antioxidant Activity of Tocopherols. Finding of New Tocopherol Derivatives having the Highest Antioxidant Activity Among Phenolic Antioxidants, J. Org. Chem., 54, 557 (1989); https://doi.org/10.1021/jo00264a011.
  18. A.M. Saleh and W. Abu El-Soud, Evidence for “Gibberellin-Like” Activity of Coumarin, S. Afr. J. Bot., 100, 51 (2015); https://doi.org/10.1016/j.sajb.2015.05.010.
  19. S. Jiwajinda, V. Santisopasri and H. Ohigashi, Coumarin-Related Compounds as Plant Growth Inhibitors from Two Rutaceous Plants in Thailand, Biosci. Biotechnol. Biochem., 64, 420 (2000); https://doi.org/10.1271/bbb.64.420.
  20. E. Kupidlowska, The Effects of Two Disubstituted Coumarins on Mitosis and Respiration in Meristematic Cells, Pharm. Biol., 39, 273 (2001); https://doi.org/10.1076/phbi.39.4.273.5914.
  21. V. Garg, G. Kodis, P.A. Liddell, Y. Terazono, T.A. Moore, A.L. Moore and D. Gust, Artificial Photosynthetic Reaction Center with a Coumarin Based Antenna System, J. Phys. Chem. B, 117, 11299 (2013); https://doi.org/10.1021/jp402265e.
  22. I. Kostova, Synthetic and Natural Coumarins as Cytotoxic Agents, Curr. Med. Chem. Anticancer Agents, 5, 29 (2005).
  23. E. Niro, R. Marzaioli, S. De Crescenzo, B. D’Abrosca, A. Esposito, A. Fiorentino, S. Castaldi and F.A. Rutigliano, Effects of the Allelochemical Coumarin on Plants and Soil Microbial Community, Soil Biol. Biochem., 95, 30 (2016); https://doi.org/10.1016/j.soilbio.2015.11.028.
  24. A. Lupini, A. Sorgonà, A.J. Miller and M.R. Abenavoli, Short-Term Effects of Coumarin Along the Maize Primary Root Axis, Plant Signal. Behav., 5, 1395 (2010); https://doi.org/10.4161/psb.5.11.13021.
  25. G.B. Bubols, D.R. Vianna, R.A. Medina, G. von Poster, R.M. Lamuela-Raventos, V.L. Eifler-Lima and S.C. Garcia, The Antioxidant Activity of Coumarins and Flavonoids, Mini Rev. Med. Chem., 13, 318 (2013); https://doi.org/10.2174/1389557511313030002.
  26. P. Anand, B. Singh and N. Singh, A Review on Coumarins as Acetyl-cholinesterase Inhibitors for Alzheimer’s Disease, Bioorg. Med. Chem., 20, 1175 (2012); https://doi.org/10.1016/j.bmc.2011.12.042.
  27. B.G. Lake, Coumarin Metabolism, Toxicity and Carcinogenicity: Relevance for Human Risk Assessment, Food Chem. Toxicol., 37, 423 (1999); https://doi.org/10.1016/S0278-6915(99)00010-1.
  28. D. Billeret, D. Blondeau and H. Sliwa, Convenient Synthesis of 5-Azacoumarins, J. Heterocycl. Chem., 30, 671 (1993); https://doi.org/10.1002/jhet.5570300316.
  29. M.M. Suzmann, IV World Congress of Cardiology, Mexico, p. 344 (1962).
  30. C. Doucet, L. Pochet, N. Thierry, B. Pirotte, J. Delarge and M. Reboud-Ravaux, 6-Substituted 2-Oxo-2H-1-benzopyran-3-carboxylic Acid as a Core Structure for Specific Inhibitors of Human Leukocyte Elastase, J. Med. Chem., 42, 4161 (1999); https://doi.org/10.1021/jm990070k.
  31. L. Pochet, C. Doucet, M. Schynts, N. Thierry, N. Boggetto, B. Pirotte, K.Y. Jiang, B. Masereel, P. de Tullio, J. Delarge and M. Reboud-Ravaux, Esters and Amides of 6-(Chloromethyl)-2-oxo-2H-1-benzopyran-3-carboxylic Acid as Inhibitors of a-Chymotrypsin: Significance of the Aromatic Nature of Novel Ester-Type Coumarin for Strong Inhibitory Activity, J. Med. Chem., 39, 2579 (1996); https://doi.org/10.1021/jm960090b.
  32. V. Spiro and P. Madonia, Atti. Acad. Sci. Lett. Antipalermo., A95920187 (1959).
  33. G. Cravotto, G.M. Nano, G. Palmisano and S. Tagliapietra, An Asymmetric Approach to Coumarin Anticoagulants via Hetero-Diels–Alder Cycloaddition, Tetrahedron Asymm., 12, 707 (2001); https://doi.org/10.1016/S0957-4166(01)00124-0.
  34. C.J. Wang, Y.J. Hsieh, C.Y. Chu, Y.L. Lin and T.H. Tseng, Inhibition of Cell Cycle Progression in Human Leukemia HL-60 Cells by Esculetin, Cancer Lett., 183, 163 (2002); https://doi.org/10.1016/S0304-3835(02)00031-9.
  35. S. Kirkiacharian, D.T. Thuy, S. Sicsic, R. Bakhchinian, R. Kurkjian and T. Tonnaire, Structure–Activity Relationships of Some 3-Substituted-4-hydroxycoumarins as HIV-1 Protease Inhibitors, Il Farmaco, 57, 703 (2002); https://doi.org/10.1016/S0014-827X(02)01264-8.
  36. O.A. Olayinka and C.N. Obinna, Microwave-Assisted Synthesis and Eval-uation of Antimicrobial Activity of 3-{3-(s-Aryl and s-heteroaromatic)-acryloyl}-2H-chromen-2-one Derivatives, J. Heterocycl. Chem., 47, 179 (2010); https://doi.org/10.1002/jhet.298.
  37. H. Yamazaki, M. Tanaka and T. Shimada, Highly Sensitive High Perfor-mance Liquid Chromatographic Assay for Coumarin 7-Hydroxylation and 7-Ethoxycoumarin O-Deethylation by Human Liver Cytochrome P450 Enzymes, J. Chromatogr. B Biomed. Sci. Appl., 721, 13 (1999); https://doi.org/10.1016/S0378-4347(98)00472-1.
  38. M.E. Fernández Izquierdo, J. Quesada Granados, M. Villalón Mir and M.C. López Martinez, Comparison of Methods for Determining Coumarins in Distilled Beverages, Food Chem., 70, 251 (2000); https://doi.org/10.1016/S0308-8146(00)00071-6.
  39. S.R. Trenor, A.R. Shultz, B.J. Love and T.E. Long, Coumarins in Polymers: From Light Harvesting to Photo-Cross-Linkable Tissue Scaffolds, Chem. Rev., 104, 3059 (2004); https://doi.org/10.1021/cr030037c.
  40. J.W.M. van der Meer, The Infectious Disease Challenges of Our Time, Front. Public Health, 1, 7 (2013); https://doi.org/10.3389/fpubh.2013.00007.
  41. DM. Morens and A.S. Fauci, Emerging Infectious Diseases: Threats to Human Health and Global Stability, PLoS Pathog., 8, e1003467 (2013); https://doi.org/10.1371/journal.ppat.1003467.
  42. J. Davies and D. Davies, Origins and Evolution of Antibiotic Resistance, Microbiol. Mol. Biol. Rev., 74, 417 (2010); https://doi.org/10.1128/MMBR.00016-10.
  43. D. Jasovsky, J. Littmann, A. Zorzet and O. Cars, Antimicrobial Resistance-A Threat to the World’s Sustainable Development, Ups. J. Med. Sci., 121, 159 (2016); https://doi.org/10.1080/03009734.2016.1195900.
  44. N. Alsaad, B. Wilffert, R. van Altena, W.C.M. de Lange, T.S. van der Werf, J.G.W. Kosterink and J.-W.C. Alffenaar, Potential Antimicrobial Agents for the Treatment of Multidrug-Resistant Tuberculosis, Eur. Respir. J., 43, 884 (2014); https://doi.org/10.1183/09031936.00113713.
  45. Y.N. Mabkhot, A. Barakat, A.M. Al-Majid and S.A. Alshahrani, Comprehensive and Facile Synthesis of Some Functionalized Bis-Heterocyclic Compounds Containing a Thieno[2,3-b]thiophene Motif, Int. J. Mol. Sci., 13, 2263 (2012); https://doi.org/10.3390/ijms13022263.
  46. T. Voloshchuk, N.S. Farina, O.R. Wauchope, M. Kiprowska, P. Haberfield and A. Greer, Molecular Bilateral Symmetry of Natural Products: Prediction of Selectivity of Dimeric Molecules by Density Functional Theory and Semiempirical Calculations, J. Nat. Prod., 67, 1141 (2004); https://doi.org/10.1021/np049899e.
  47. F. Celik, Y. Unver, B. Barut, A. Ozel and K. Sancak, Synthesis, Characterization and Biological Activities of New Symmetric Bis-1,2,3-Triazoles with Click Chemistry, Med. Chem., 14, 230 (2018); https://doi.org/10.2174/1573406413666171120165226.
  48. G. Kour, I. Kour, P. Sharma and R. Sachar, Synthesis, Characterization and Biological Application of Adducts of Bis(S-ethyltrithiocarbonato)-nickel(II) with Heterocyclic Amines, Chem. Sci. Trans., 3, 1334 (2014); https://doi.org/10.7598/cst2014.876.
  49. A. Srinivas, A. Nagaraj and C.S. Reddy, Synthesis and in vitro Study of Methylene-bis-tetrahydro[1,3]thiazolo[4,5-c]isoxazoles as Potential Nematicidal Agents, Eur. J. Med. Chem., 45, 2353 (2010); https://doi.org/10.1016/j.ejmech.2010.02.014.
  50. C.S. Reddy, D. Chandrashekar Rao, V. Yakub and A. Nagaraj, Synthesis, Nematicidal and Antimicrobial Activity of 3-(5-3-Methyl-5-[(3-methyl-7-5-[2-(aryl)-4-oxo-1,3-thiazolan-3-yl]-1,3,4-thiadiazol-2-ylbenzo[b]furan-5-yl)methyl]benzo[b]furan-7-yl-1,3,4-thiadiazol-2-yl)-2-(aryl)-1,3-thiazolan-4-one, Chem. Pharm. Bull. (Tokyo), 58, 805 (2010); https://doi.org/10.1248/cpb.58.805.
  51. Ch. Sanjeeva Reddy, D. Chandrasekhar Rao, V. Yakub and A. Nagaraj, Synthesis of Some Novel Bis[1,2,4]triazolo[3, 4-b][1,3,4]thiadiazine Derivatives for Antimicrobial Evaluation, Acta Chim. Slov., 58, 582 (2011).
  52. Ch. Sanjeeva Reddy, M.V. Devi, G.R. Kumar, M. Sunitha and A. Nagaraj, Synthesis and Biological Evaluation of Novel Bis[1,2,4]triazolo[3,4-b]-[1,3,4]oxadiazoles, J. Heterocycl. Chem., 50, 557 (2013); https://doi.org/10.1002/jhet.1528.
  53. Ch. Sanjeeva Reddy, D. Chandrasekhar Rao, B. Kalyani and A. Nagaraj, Synthesis and Antibacterial Activity of Bis-heterocycles Containing Pyrimidine and Morpholine, J. Chem. Chem. Sci., 7, 1011 (2017).
  54. C.S. Marvel and N. Tarkoy, Heat Stability Studies on Chelates from Schiff Bases of Salicylaldehyde Derivatives, J. Am. Chem. Soc., 79, 6000 (1957); https://doi.org/10.1021/ja01579a041.
  55. X. Zhou, B. Wang, T. Wang and Y. Kong, Design, Synthesis and Acetyl-cholinesterase Inhibitory Activity of Novel Coumarin Analogues, Bioorg. Med. Chem., 16, 8011 (2008); https://doi.org/10.1016/j.bmc.2008.07.068.
  56. H.W. Seely and D.P.J. Van, Microbes in Action, A Laboraoty Manual of Microbiology, D.B. Taraporevala & Co. Pvt. Ltd.: Bombay, India, p. 55 (1975).