Main Article Content
Abstract
The present investigation was under-taken to synthesize the Schiff base indole derivatives bearing of 1,3,4-oxadiazole thiazolidinone and azetidinone moieties. New series of 5-(5-substituted-3-phenyl- 1H-indol-2-yl)-N-[(5-substituted-2-phenyl-1H-indol-3-yl)methylene]-1,3,4-oxadiazol-2-amines and screened their biological activities. Compound 4a showed excellent antibacterial and radical scavenging activities. Compound 5a revealed efficient to antifungal activity. In addition, compound 4a was found to be most active against H37Rv strain Mycobacterium tuberculosis. In case of anticancer activity methoxy compounds 4e and 6e against all the three tumor cell lines manifested remarkable cytotoxic activity. Compounds 4e, 5e and 6e have shown strong ferrous ions (Fe3+) reducing antioxidant power (FRAP) among the compounds screened. Compound 5b showed more potent of metal chelating on Fe2+ ions activity at all concentrations.
Keywords
Article Details
References
- T.P. Szatrowski and C.F. Nathan, Production of Large Amounts of Hydrogen Peroxide by Human Tumor Cells, Cancer Res., 51, 794 (1991).
- A.S. El-Azab and K.E. Eltahir, Design and Synthesis of Novel 7-Amino-quinazoline Derivatives: Antitumor and Anticonvulsant Activities, Bioorg. Med. Chem. Lett., 22, 1879 (2012); https://doi.org/10.1016/j.bmcl.2012.01.071.
- A.S. El-Azab, M.A. Al-Omar, A.A. Abdel-Aziz, N.I. Abdel-Aziz, M.A. El-Sayed, A.M. Aleisa, M.M. Sayed-Ahmed and S.G. Abdel-Hamide, Design, Synthesis and Biological Evaluation of Novel Quinazoline Derivatives ss Potential Antitumor Agents: Molecular Docking Study, Eur. J. Med. Chem., 45, 4188 (2010); https://doi.org/10.1016/j.ejmech.2010.06.013.
- O. Sorg, Oxidative Stress: A Theoretical Model or a Biological Reality? C.R. Biol., 327, 649 (2004); https://doi.org/10.1016/j.crvi.2004.05.007.
- M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic and M. Mazur, Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer, Chem. Biol. Interact., 160, 1 (2006); https://doi.org/10.1016/j.cbi.2005.12.009.
- M. Valko, M. Izakovic, M. Mazur, C.J. Rhodes and J. Telser, Role of Oxygen Radicals in DNA Damage and Cancer Incidence, J. Mol. Cell Biochem., 266, 37 (2004); https://doi.org/10.1023/B:MCBI.0000049134.69131.89.
- B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, edn (2015).
- M.E. Falagas, V.D. Kouranos, Z. Athanassa and P. Kopterides, Tuberculosis and Malignancy , QJM, 103, 461 (2010); https://doi.org/10.1093/qjmed/hcq068.
- Y.I. Kim, J.M. Goo, H.Y. Kim, J.W. Song and J.G. Im, Coexisting Bronchogenic Carcinoma and Pulmonary Tuberculosis in the Same Lobe: Radiologic Findings and Clinical Significance, Korean J. Radiol., 2, 138 (2001); https://doi.org/10.3348/kjr.2001.2.3.138.
- A.V. Brenner, Z. Wang, R.A. Kleinerman, L. Wang, S. Zhang, C. Metayer, K. Chen, S. Lei, H. Cui and J.H. Lubin, Previous Pulmonary Diseases and Risk of Lung Cancer in Gansu Province, China, Int. J. Epidemiol., 30, 118 (2001); https://doi.org/10.1093/ije/30.1.118.
- K. Tolaro and A. Tolaro, Foundation of Microbiology, W.C. Brown Publisher, Dubuque, edn 3, p. 326 (1993).
- D.S. Maharaj, B.D. Glass and S. Daya, Melatonin: New Places in Therapy, Biosci. Rep., 27, 299 (2007); https://doi.org/10.1007/s10540-007-9052-1.
- R.S. Varma and P.K. Garg, Synthesis of Substituted 5-Chloro-3-phenyl-thiosemicarbazono-2-indolinones as Potential Antimicrobial Agents, Acta Pharm. Jugosl., 30, 199 (1980).
- S.P. Singh, V.A. Singh, and K.C. Gupta, Synthesis of Some New 5-Bromo-3-(arylthiosemicarbazono)-2-indolinones as Antimicrobial Agents, Acta Pharm. Jugosl., 36, 19 (1986).
- M.G. Bhovi and G.S. Gadaginamath, 1,3-Dipolar Cycloaddition Reaction: Synthesis and Antimicrobial Activity of Some New 3-ethoxy-carbonyl-5-methoxy-6-bromo-2-triazolylmethylindoles, Indian J. Heterocycl. Chem., 14, 15 (2014).
- I.M. Labouta, H.M. Salama, N.H. Eshba and E. El-Chrbini, Novel Indolinones with Potential Antimicrobial and Antineoplastic Activities, Acta Pharm. Jugosl., 38, 189 (1988).
- A. Heckel and J.R. Gerald, Preparation of Substituted Amino Methylene-indolinone Inhibitors of Tyrosine Receptor Kinase and Cdk/Cyclin Kinase as Antitumor Agents and Inhibitors of Cell Proliferation, PCT International Applications, WO 01 27, 081 (Cl.C07D209/34), April 2001, DE Appl. 10.042,696,282, August (2000).
- S.P. Singh and R.K. Jha, Indolinone Derivatives as Potential Antimicrobial agents, Zentralbl. Mikrobiol., 144, 105 (1989); https://doi.org/10.1016/S0232-4393(89)80073-3.
- S.K. Sridhar, S.N. Pandeya, S.K. Bajpai and H. Manjula, Synthesis, Antibacterial and Antiviral Activities of Isatin Derivatives, Indian Drugs, 36, 412 (1999).
- D.X. Tan, R.J. Reiter, L. Manchester, M. Yan, M. El-Sawi, R. Sainz, J. Mayo, R. Kohen, M. Allegra and R. Hardelan, Chemical and Physical Properties and Potential Mechanisms: Melatonin as a Broad Spectrum Antioxidant and Free Radical Scavenger, Curr. Top. Med. Chem., 2, 181 (2002); https://doi.org/10.2174/1568026023394443.
- A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, P. Navabi, V. Zanganeh and A. Shafiee, Synthesis and Anticonvulsant Activity of New 2-Substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles, Bioorg. Med. Chem. Lett., 15, 1863 (2005); https://doi.org/10.1016/j.bmcl.2005.02.014.
- A.N. Krasovskii, A.K. Bulgakov, A.P. Andrushko, I.A. Krasovskii, A.M. Dyachenko, A.A. Bokun, N.A. Kravchenko and A.M. Demchenko, Antimicrobial and Tuberculostatic Activity of 5-Aryl(hetaryl)-1,3,4-oxadiazole-2-thiones and their Derivatives, Pharm. Chem. J., 34, 115 (2000); https://doi.org/10.1007/BF02524578.
- S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate and V.J. Mokale, Design, Synthesis and Evaluation of Antiinflammatory, Analgesic and Ulcerogenicity Studies of Novel S-Substituted Phenacyl-1,3,4-oxadiazole-2-thiol and Schiff Bases of Diclofenac Acid as Nonulcerogenic Derivatives, Bioorg. Med. Chem., 16, 1822 (2008); https://doi.org/10.1016/j.bmc.2007.11.014.
- B.S. Sudha, S. Shashikanth, S.A. Khanum and S.N. Sriharsha, Synthesis and Pharmacological Screening of 5-(4-Aroyl)-aryloxy methyl-2-thio-1,3,4-oxadiazole, Indian J. Pharm. Sci., 65, 465 (2003).
- K.M. Lokanatha Rai and N. Linganna, Synthesis and Evaluation of Antimitotic Activity of Alkylated 2-amino-1,3,4-oxadiazole Derivatives, Il Farmaco, 55, 389 (2000); https://doi.org/10.1016/S0014-827X(00)00056-2.
- S. Saxena, M. Verma, A.K. Saxena and K. Shanker, 1,3,4-Oxidiazole Thiones as Inflammation Inhibitors, Indian J. Pharm. Sci., 54, 1 (1992).
- M. Zareef, R. Iqbal, N.A. Al-Masoudi, J.H. Zaidi, M. Arfan and S.A. Shahzad, Synthesis, Anti–HIV and Antifungal Activity of New Benzen-sulfonamides Bearing the 2,5-Disubstituted-1,3,4-Oxadiazole Moiety, Phosphorus Sulfur Silicon Rel. Elem., 182, 281 (2007); https://doi.org/10.1080/10426500600919074.
- R.C. Sharma and D. Kumar, Synthesis of Some New Thiazolidin-4-ones as Possible Antimicrobial Agents, J. Indian Chem. Soc., 77, 492 (2000).
- H.D. Joshi, P.S. Upadhyay and A.J. Baxi, studies on 4-Thiazolidinones-Synthesis and Pharmacological Activity of 1,4-bis[2¢-methyl/ethyl/phenyl-2¢-substituted styryl-5¢-H/methyl/carboxymethyl-4¢-thiazoli-dinon-3¢-ylamino]phthalazines, Indian J. Chem., 39B, 967 (2000).
- V.S. Ingle, A.R. Sawale, R.D. Ingle and R.A. Mane, Synthesis of New 4-Thiazolidinones bearing Potentially Active Heteryl Moities, Indian J. Chem., 40B, 124 (2001).
- P. Kagthara, T. Upadhyay, R. Doshi and H.H. Parekh, Synthesis of Some 2-Azetidinones as Potential Antitubercular Agents, Indian J. Heterocycl. Chem., 10, 9 (2000).
- N. Matsui, Preparation of Azetidinones as Intermediates for Carbapenem Antibiotics, Japanese Kokai Tokkyo Koho, 7, 652 (2000).
- P.D. Mehta, N.P. Sengar and A.K. Pathak, 2-Azetidinone-A New Profile of Various Pharmacological Activities, Eur. J. Med. Chem., 45, 5541 (2010); https://doi.org/10.1016/j.ejmech.2010.09.035.
- S.B. Desai, P.B. Desai and K.R. Desai, Synthesis of Some 4-Thiazoli-dinone and Azetidinone Compounds and their Antimicrobial Activity, Asian J. Chem., 11, 1431 (1999).
- K.M. Thaker, V.V. Kachhadia and H.S. Joshi, Synthesis of 4-Thiazoli-dinones and 2-Azetidinones bearing Benzo(b)thiophene Nucleus as Potential Antitubercular and Antimicrobial Agents, Indian J. Chem., 42B, 1544 (2003).
- S.P. Hiremath, B.H.M. Mruthyunjayaswamy and M.G. Purohit, Synthesis of Substituted 2-Aminoindolees and 2-(2¢-Phenyl-1¢,3¢,4¢-oxadiazolyl)-aminoindoles, Indian J. Chem., 16B, 789 (1978).
- M.B. Patel, N.R. Modi, J.P. Raval and S.K. Menon, Calix[4]arene Based 1,3,4-Oxadiazole and Thiadiazole Derivatives: Design, Synthesis, and Biological Evaluation, Org. Biomol. Chem., 10, 1785 (2012); https://doi.org/10.1039/c2ob06730g.
- S.P. Hiremath, J.S. Biradar and M.G. Purohit, A New Route to Indolo [3,2-b]isoquinolines, Indian J. Chem., 21B, 249 (1982).
- NCCLS Approved Standard M-27-A, Villanova, PA, 17 (9) (1997).
- NCCLS Approved Standard M7-A, Villanova, PA, 17(9) (1997).
- National Committee for Clinical Laboratory Studies Performance Standards for Antimicrobial Susceptibilility (1998).
- T. Hatano, H. Kagawa, T. Yasuhara and T. Okuda, Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects, Chem. Pharm. Bull., 36, 2090 (1988); https://doi.org/10.1248/cpb.36.2090.
- M. Oyaizu, Studies on Products of Browning Reaction, Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine, Nutrit. J., 44, 307 (1986); https://doi.org/10.5264/eiyogakuzashi.44.307.
- T.C.P. Dinis, V.M.C. Madeira and L.M. Almeida, Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers, Arch. Biochem. Biophys., 315, 161 (1994); https://doi.org/10.1006/abbi.1994.1485.
- MC.S. Lourenço, M.V.N. de Souza, A.C. Pinheiro, M. de L. Ferreira, R.S.B. Gonçalves, T.C.M. Nogueira and MA. Peralta, Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues, ARKIVOC, 181 (2007); https://doi.org/10.3998/ark.5550190.0008.f18.
- T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.
References
T.P. Szatrowski and C.F. Nathan, Production of Large Amounts of Hydrogen Peroxide by Human Tumor Cells, Cancer Res., 51, 794 (1991).
A.S. El-Azab and K.E. Eltahir, Design and Synthesis of Novel 7-Amino-quinazoline Derivatives: Antitumor and Anticonvulsant Activities, Bioorg. Med. Chem. Lett., 22, 1879 (2012); https://doi.org/10.1016/j.bmcl.2012.01.071.
A.S. El-Azab, M.A. Al-Omar, A.A. Abdel-Aziz, N.I. Abdel-Aziz, M.A. El-Sayed, A.M. Aleisa, M.M. Sayed-Ahmed and S.G. Abdel-Hamide, Design, Synthesis and Biological Evaluation of Novel Quinazoline Derivatives ss Potential Antitumor Agents: Molecular Docking Study, Eur. J. Med. Chem., 45, 4188 (2010); https://doi.org/10.1016/j.ejmech.2010.06.013.
O. Sorg, Oxidative Stress: A Theoretical Model or a Biological Reality? C.R. Biol., 327, 649 (2004); https://doi.org/10.1016/j.crvi.2004.05.007.
M. Valko, C.J. Rhodes, J. Moncol, M. Izakovic and M. Mazur, Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer, Chem. Biol. Interact., 160, 1 (2006); https://doi.org/10.1016/j.cbi.2005.12.009.
M. Valko, M. Izakovic, M. Mazur, C.J. Rhodes and J. Telser, Role of Oxygen Radicals in DNA Damage and Cancer Incidence, J. Mol. Cell Biochem., 266, 37 (2004); https://doi.org/10.1023/B:MCBI.0000049134.69131.89.
B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Oxford University Press, edn (2015).
M.E. Falagas, V.D. Kouranos, Z. Athanassa and P. Kopterides, Tuberculosis and Malignancy , QJM, 103, 461 (2010); https://doi.org/10.1093/qjmed/hcq068.
Y.I. Kim, J.M. Goo, H.Y. Kim, J.W. Song and J.G. Im, Coexisting Bronchogenic Carcinoma and Pulmonary Tuberculosis in the Same Lobe: Radiologic Findings and Clinical Significance, Korean J. Radiol., 2, 138 (2001); https://doi.org/10.3348/kjr.2001.2.3.138.
A.V. Brenner, Z. Wang, R.A. Kleinerman, L. Wang, S. Zhang, C. Metayer, K. Chen, S. Lei, H. Cui and J.H. Lubin, Previous Pulmonary Diseases and Risk of Lung Cancer in Gansu Province, China, Int. J. Epidemiol., 30, 118 (2001); https://doi.org/10.1093/ije/30.1.118.
K. Tolaro and A. Tolaro, Foundation of Microbiology, W.C. Brown Publisher, Dubuque, edn 3, p. 326 (1993).
D.S. Maharaj, B.D. Glass and S. Daya, Melatonin: New Places in Therapy, Biosci. Rep., 27, 299 (2007); https://doi.org/10.1007/s10540-007-9052-1.
R.S. Varma and P.K. Garg, Synthesis of Substituted 5-Chloro-3-phenyl-thiosemicarbazono-2-indolinones as Potential Antimicrobial Agents, Acta Pharm. Jugosl., 30, 199 (1980).
S.P. Singh, V.A. Singh, and K.C. Gupta, Synthesis of Some New 5-Bromo-3-(arylthiosemicarbazono)-2-indolinones as Antimicrobial Agents, Acta Pharm. Jugosl., 36, 19 (1986).
M.G. Bhovi and G.S. Gadaginamath, 1,3-Dipolar Cycloaddition Reaction: Synthesis and Antimicrobial Activity of Some New 3-ethoxy-carbonyl-5-methoxy-6-bromo-2-triazolylmethylindoles, Indian J. Heterocycl. Chem., 14, 15 (2014).
I.M. Labouta, H.M. Salama, N.H. Eshba and E. El-Chrbini, Novel Indolinones with Potential Antimicrobial and Antineoplastic Activities, Acta Pharm. Jugosl., 38, 189 (1988).
A. Heckel and J.R. Gerald, Preparation of Substituted Amino Methylene-indolinone Inhibitors of Tyrosine Receptor Kinase and Cdk/Cyclin Kinase as Antitumor Agents and Inhibitors of Cell Proliferation, PCT International Applications, WO 01 27, 081 (Cl.C07D209/34), April 2001, DE Appl. 10.042,696,282, August (2000).
S.P. Singh and R.K. Jha, Indolinone Derivatives as Potential Antimicrobial agents, Zentralbl. Mikrobiol., 144, 105 (1989); https://doi.org/10.1016/S0232-4393(89)80073-3.
S.K. Sridhar, S.N. Pandeya, S.K. Bajpai and H. Manjula, Synthesis, Antibacterial and Antiviral Activities of Isatin Derivatives, Indian Drugs, 36, 412 (1999).
D.X. Tan, R.J. Reiter, L. Manchester, M. Yan, M. El-Sawi, R. Sainz, J. Mayo, R. Kohen, M. Allegra and R. Hardelan, Chemical and Physical Properties and Potential Mechanisms: Melatonin as a Broad Spectrum Antioxidant and Free Radical Scavenger, Curr. Top. Med. Chem., 2, 181 (2002); https://doi.org/10.2174/1568026023394443.
A. Zarghi, S.A. Tabatabai, M. Faizi, A. Ahadian, P. Navabi, V. Zanganeh and A. Shafiee, Synthesis and Anticonvulsant Activity of New 2-Substituted-5-(2-benzyloxyphenyl)-1,3,4-oxadiazoles, Bioorg. Med. Chem. Lett., 15, 1863 (2005); https://doi.org/10.1016/j.bmcl.2005.02.014.
A.N. Krasovskii, A.K. Bulgakov, A.P. Andrushko, I.A. Krasovskii, A.M. Dyachenko, A.A. Bokun, N.A. Kravchenko and A.M. Demchenko, Antimicrobial and Tuberculostatic Activity of 5-Aryl(hetaryl)-1,3,4-oxadiazole-2-thiones and their Derivatives, Pharm. Chem. J., 34, 115 (2000); https://doi.org/10.1007/BF02524578.
S.V. Bhandari, K.G. Bothara, M.K. Raut, A.A. Patil, A.P. Sarkate and V.J. Mokale, Design, Synthesis and Evaluation of Antiinflammatory, Analgesic and Ulcerogenicity Studies of Novel S-Substituted Phenacyl-1,3,4-oxadiazole-2-thiol and Schiff Bases of Diclofenac Acid as Nonulcerogenic Derivatives, Bioorg. Med. Chem., 16, 1822 (2008); https://doi.org/10.1016/j.bmc.2007.11.014.
B.S. Sudha, S. Shashikanth, S.A. Khanum and S.N. Sriharsha, Synthesis and Pharmacological Screening of 5-(4-Aroyl)-aryloxy methyl-2-thio-1,3,4-oxadiazole, Indian J. Pharm. Sci., 65, 465 (2003).
K.M. Lokanatha Rai and N. Linganna, Synthesis and Evaluation of Antimitotic Activity of Alkylated 2-amino-1,3,4-oxadiazole Derivatives, Il Farmaco, 55, 389 (2000); https://doi.org/10.1016/S0014-827X(00)00056-2.
S. Saxena, M. Verma, A.K. Saxena and K. Shanker, 1,3,4-Oxidiazole Thiones as Inflammation Inhibitors, Indian J. Pharm. Sci., 54, 1 (1992).
M. Zareef, R. Iqbal, N.A. Al-Masoudi, J.H. Zaidi, M. Arfan and S.A. Shahzad, Synthesis, Anti–HIV and Antifungal Activity of New Benzen-sulfonamides Bearing the 2,5-Disubstituted-1,3,4-Oxadiazole Moiety, Phosphorus Sulfur Silicon Rel. Elem., 182, 281 (2007); https://doi.org/10.1080/10426500600919074.
R.C. Sharma and D. Kumar, Synthesis of Some New Thiazolidin-4-ones as Possible Antimicrobial Agents, J. Indian Chem. Soc., 77, 492 (2000).
H.D. Joshi, P.S. Upadhyay and A.J. Baxi, studies on 4-Thiazolidinones-Synthesis and Pharmacological Activity of 1,4-bis[2¢-methyl/ethyl/phenyl-2¢-substituted styryl-5¢-H/methyl/carboxymethyl-4¢-thiazoli-dinon-3¢-ylamino]phthalazines, Indian J. Chem., 39B, 967 (2000).
V.S. Ingle, A.R. Sawale, R.D. Ingle and R.A. Mane, Synthesis of New 4-Thiazolidinones bearing Potentially Active Heteryl Moities, Indian J. Chem., 40B, 124 (2001).
P. Kagthara, T. Upadhyay, R. Doshi and H.H. Parekh, Synthesis of Some 2-Azetidinones as Potential Antitubercular Agents, Indian J. Heterocycl. Chem., 10, 9 (2000).
N. Matsui, Preparation of Azetidinones as Intermediates for Carbapenem Antibiotics, Japanese Kokai Tokkyo Koho, 7, 652 (2000).
P.D. Mehta, N.P. Sengar and A.K. Pathak, 2-Azetidinone-A New Profile of Various Pharmacological Activities, Eur. J. Med. Chem., 45, 5541 (2010); https://doi.org/10.1016/j.ejmech.2010.09.035.
S.B. Desai, P.B. Desai and K.R. Desai, Synthesis of Some 4-Thiazoli-dinone and Azetidinone Compounds and their Antimicrobial Activity, Asian J. Chem., 11, 1431 (1999).
K.M. Thaker, V.V. Kachhadia and H.S. Joshi, Synthesis of 4-Thiazoli-dinones and 2-Azetidinones bearing Benzo(b)thiophene Nucleus as Potential Antitubercular and Antimicrobial Agents, Indian J. Chem., 42B, 1544 (2003).
S.P. Hiremath, B.H.M. Mruthyunjayaswamy and M.G. Purohit, Synthesis of Substituted 2-Aminoindolees and 2-(2¢-Phenyl-1¢,3¢,4¢-oxadiazolyl)-aminoindoles, Indian J. Chem., 16B, 789 (1978).
M.B. Patel, N.R. Modi, J.P. Raval and S.K. Menon, Calix[4]arene Based 1,3,4-Oxadiazole and Thiadiazole Derivatives: Design, Synthesis, and Biological Evaluation, Org. Biomol. Chem., 10, 1785 (2012); https://doi.org/10.1039/c2ob06730g.
S.P. Hiremath, J.S. Biradar and M.G. Purohit, A New Route to Indolo [3,2-b]isoquinolines, Indian J. Chem., 21B, 249 (1982).
NCCLS Approved Standard M-27-A, Villanova, PA, 17 (9) (1997).
NCCLS Approved Standard M7-A, Villanova, PA, 17(9) (1997).
National Committee for Clinical Laboratory Studies Performance Standards for Antimicrobial Susceptibilility (1998).
T. Hatano, H. Kagawa, T. Yasuhara and T. Okuda, Two New Flavonoids and Other Constituents in Licorice Root: Their Relative Astringency and Radical Scavenging Effects, Chem. Pharm. Bull., 36, 2090 (1988); https://doi.org/10.1248/cpb.36.2090.
M. Oyaizu, Studies on Products of Browning Reaction, Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine, Nutrit. J., 44, 307 (1986); https://doi.org/10.5264/eiyogakuzashi.44.307.
T.C.P. Dinis, V.M.C. Madeira and L.M. Almeida, Action of Phenolic Derivatives (Acetaminophen, Salicylate, and 5-Aminosalicylate) as Inhibitors of Membrane Lipid Peroxidation and as Peroxyl Radical Scavengers, Arch. Biochem. Biophys., 315, 161 (1994); https://doi.org/10.1006/abbi.1994.1485.
MC.S. Lourenço, M.V.N. de Souza, A.C. Pinheiro, M. de L. Ferreira, R.S.B. Gonçalves, T.C.M. Nogueira and MA. Peralta, Evaluation of Anti-Tubercular Activity of Nicotinic and Isoniazid Analogues, ARKIVOC, 181 (2007); https://doi.org/10.3998/ark.5550190.0008.f18.
T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays, J. Immunol. Methods, 65, 55 (1983); https://doi.org/10.1016/0022-1759(83)90303-4.