Main Article Content

Abstract

The objective of this study was to formulate and optimize a stable rilpivirine nanosuspension. In the present study, yttrium stabilized zirconium oxide beads being used as the milling media in nanomilling process. The lyophilized nanocrystals were being characterized by particle size distribution (PSD), polydispersity index (PDI), X-ray diffraction (XRD) and FTIR (Fourier transform infrared spectroscopy). Optimized nanosuspension has mean particle diameter of 266 nm, PDI of 0.158, zeta potential of 22.1 mV and spherical in shape with surface oriented stabilizer molecules. Flow properties like sedimentation volume, pourability with the F value of 0.94 and also the redispersability even after 4 weeks of storage was found to be satisfactory for the optimized nano-suspension. Many folds increase in solubility and rate of drug release observed, The lyophilized nanocrystals retains its crystallinity after nanomilling, stable chemically with high drug content, therefore, the developed nanosuspension would be an alternative better formulation than its conventional formulation to address its bioavailability issue. However, this should be further confirmed by appropriate techniques in vivo studies.

Keywords

Nanosuspension Rilpivirine Nanomilling Optimization

Article Details

How to Cite
Sankar Sahoo, S., & Babu Rao, C. (2019). Formulation Development and Characterization of Rilpivirine Nanosuspension for Improved Solubility by Nanomilling. Asian Journal of Organic & Medicinal Chemistry, 4(2), 130–137. https://doi.org/10.14233/ajomc.2019.AJOMC-P210

References

  1. R. Shegokar and R.H. Muller, Nanocrystals: Industrially Feasible Multifunctional Formulation Technology For Poorly Soluble Actives., Int. J. Pharm., 399, 129 (2010); https://doi.org/10.1016/j.ijpharm.2010.07.044.
  2. J.M. Irache, I. Esparza, C. Gamazo, M. Agueros and S. Espuelas, Nano-medicine: Novel Approaches in Human and Veterinary Therapeutics, Vet. Parasitol., 180, 47 (2011); https://doi.org/10.1016/j.vetpar.2011.05.028.
  3. J.U.A.H. Junghanns and R.H. Müller, Nanocrystal Technology, Drug Delivery and Clinical Applications, Int. J. Nanomed., 3, 295 (2008).
  4. Y. Kawabata, K. Wada, M. Nakatani, S. Yamada and S. Onoue, Formulation Design for Poorly Water-Soluble Drugs Based on Biopharmaceutics Classification System: Basic Approaches and Practical Applications, Int. J. Pharm., 420, 1 (2011); https://doi.org/10.1016/j.ijpharm.2011.08.032.
  5. B.E. Rabinow, Nanosuspensions in Drug Delivery, Nat. Rev. Drug Discov., 3, 785 (2004); https://doi.org/10.1038/nrd1494.
  6. R.H. Müller, S. Gohla and C.M. Keck, State of the Art of Nanocrystals- Special Features, Production, Nanotoxicology Aspects and Intracellular Delivery, Eur. J. Pharm. Biopharm., 78, 1 (2011); https://doi.org/10.1016/j.ejpb.2011.01.007.
  7. P.P. Ige, R.K. Baria and S.G. Gattani, Fabrication of Fenofibrate Nano-crystals by Probe Sonication Method for Enhancement of Dissolution Rate and Oral Bioavailability, Colloids Surf., 108, 366 (2013); https://doi.org/10.1016/j.colsurfb.2013.02.043.
  8. E. Merisko-Liversidge and G.G. Liversidge, Nanosizing for Oral and Parenteral Drug Delivery: A Perspective on Formulating Poorly-Water Soluble Compounds using Wet Media Milling Technology, Adv. Drug Deliv. Rev., 63, 427 (2011); https://doi.org/10.1016/j.addr.2010.12.007.
  9. F. Danhier, N. Lecouturier, B. Vroman, C. Jérôme, J. Marchand-Brynaert, O. Feron and V. Préat, Paclitaxel-Loaded PEGylated PLGA-Based Nanoparticles: in vitro and in vivo Evaluation, J. Control. Rel., 133, 11 (2009); https://doi.org/10.1016/j.jconrel.2008.09.086.
  10. T. Picraux, Encyclopedia Britannica Deluxe Edition; Encyclopedia Britannica: Chicago, IL, USA (2010).
  11. PIL, Edurand® Tablet, US FDA.
  12. H.M. Crauwels, Poster Presented at the Ninth International Workshop on Pharmacology of HIV Therapy, New Orleans, LA. April 7-9 (2008).
  13. M. Malamatari, K.M.G. Taylor, S. Malamataris, D. Douroumis and K. Kachrimanis, Pharmaceutical Nanocrystals: Production By Wet Milling and Applications, Drug Discov. Today, 23, 534 (2018); https://doi.org/10.1016/j.drudis.2018.01.016.
  14. R.H. Müller and C.M. Keck, Eur. J. Pharm. Biopharm., 80, 1 (2012); https://doi.org/10.1016/j.ejpb.2011.09.012.
  15. R.H. Muller, R. Becker, B. Kross and K. Peters, Pharmaceutical Nanosus-pensions for Medicament Administration as Systems with Increased Saturation Solubility and Rate of Solution, US Patent 5858410 (1999).
  16. L. Bond, S. Allen, M.C. Davies, C.J. Roberts, A.P. Shivji, S.J.B. Tendler, P.M. Williams and J. Zhang, Differential Scanning Calorimetry and Scanning Thermal Microscopy Analysis of Pharmaceutical Materials, Int. J. Pharm., 243, 71 (2002); https://doi.org/10.1016/S0378-5173(02)00239-9.
  17. Á. Delgado, F. González-Caballero, R.J. Hunter, L.K. Koopal and J. Lyklema, Measurement and Interpretation of Electrokinetic Phenomena, J. Colloid Interface Sci., 309, 194 (2007); https://doi.org/10.1016/j.jcis.2006.12.075.
  18. R.H. Müller and G.E. Hildebrand, Zetapotential und Partikelladung in der Laborpraxis: Einfuhrung in die Theorie praktische Messdurchfuh-rung Dateninterpretation: Colloidal Drug Carriers, Paperback APV (1996).
  19. S.G. Banker and C.T. Rhodes, Disperse Systems: Modern Pharmaceutics, edn 3, (1988).
  20. N.K. Patel, L. Kenon and R.S. Levinson, Pharmaceutical Suspensions: The Theory and Practice of Industrial Pharmacy, 3rd Indian edition, (1986).
  21. B. Mishra, J. Sahoo and P.K. Dixit, Formulation and Process Optimiza-tion of Naproxen Nanosuspensions Stabilized by Hydroxy Propyl Methyl Cellulose, Carbohydr. Polym., 127, 300 (2015); https://doi.org/10.1016/j.carbpol.2015.03.077.