Main Article Content

Abstract

Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis, with high level of mortality worldwide, currently with approximately 10 million cases of tuberculosis. These rate of incidence are due to several factors such as bacterial resistance, AIDS, latent tuberculosis that reoccur in patient. Deazaflavin dependent nitroreductase (Ddn) is an emerging target in the field of antitubercular agent. Ddn catalyses the reduction of nitroimidazoles resulting in intra-cellular release of lethal reactive nitrogen species. Nitroimidazole class drug- delamanid and pretonamid are used in the treatment of MDR-TB. In this present study, 26 new nitroimidazole derivatives were designed and docked into Ddn enzyme. In docking study, compounds 3, 5, 15, 16, 17, 18 and 21 showed similar interaction with amino acid residues such as Tyr 65, Ser 78, Tyr 136 as pretonamid reference drug and highest docking score and better ADMET compatibility. The ADMET prediction docking study of new designed compound revealed that the compounds 3, 16, 17 and 21 showed good binding with Ddn. In future it may be good and effective lead for development of antitubercular agent.

Keywords

Tuberculosis Deazaflavin dependent nitroreductase Nitroimidazole Docking studies ADMET profile

Article Details

How to Cite
Kakadiya, M., Ramiya, S., Noolvi, M., & Pasha, T. (2019). Designing of Nitroimidazole Derivatives as a Promising Target for Treatment of Tuberculosis. Asian Journal of Organic & Medicinal Chemistry, 4(2), 55–60. https://doi.org/10.14233/ajomc.2019.AJOMC-P173

References

  1. M.V.N. De Souza, Promising Drugs Against Tuberculosis, Anti-Infect. Drug Disc., 1, 33 (2006); https://doi.org/10.2174/157489106775244163.
  2. http://www.who.int/tb/en/ (Accessed on 27-09-2018).
  3. S.E. Cellitti, J. Shaffer, D.H. Jones, T. Mukherjee, M. Gurumurthy, B. Bursulaya, H.I. Boshoff, I. Choi, A. Nayyar, J. Cherian, P. Niyomrattanakit, Y.S. Lee, T. Dick, U.H. Manjunatha, C.E. Barry III, G. Spraggon and B.H. Geierstanger, Structure, 21, 191 (2013) https://doi.org/10.1016/j.str.2012.12.012.
  4. A. Mital, Synthetic Nitroimidazoles: Biological Activities and Mutagenicity Relationships, Sci. Pharm., 77, 497 (2009); https://doi.org/10.3797/scipharm.0907-14.
  5. J.A. Upcroft, R.W. Campbell, K. Benakli, P. Upcroft and P. Vanelle, Efficacy of New 5-Nitroimidazoles against Metronidazole-Susceptible and -Resistant Giardia, Trichomonas and Entamoeba spp., Antimicrob. Agents Chemother., 43, 73 (1999); https://doi.org/10.1128/AAC.43.1.73.
  6. K. Nagarajan, R.G. Shankar, S. Rajappa, S.T. Shenoy and R. Costa-Pereira, Nitroimidazoles XXI 2,3-Dihydro-6-nitroimidazo[2,1-b]oxazoles with antitubercular activity, Eur. J. Med. Chem., 24, 631 (1989); https://doi.org/10.1016/0223-5234(89)90034-2.
  7. N.S. Gunay, G. Capan, N. Ulusoy, N. Ergenc, G. Otuk and D. Kaya, 5-Nitroimidazole Derivatives as Possible Antibacterial and Antifungal Agents, Il Farmaco, 54, 826 (1999); https://doi.org/10.1016/S0014-827X(99)00109-3.
  8. R.J. Hodgkiss, Use of 2-Nitroimidazoles as Bioreductive Markers for Tumour Hypoxia, Anticancer Drug Des., 13, 687 (1998).
  9. H. Hori, C.Z. Jin, M. Kiyono, S. Kasai, M. Shimamura and S. Inayama, Design, Synthesis and Biological Activity of Anti-Angiogenic Hypoxic Cell Radiosensitizer Haloacetylcarbamoyl-2-nitroimidazoles, Bioorg. Med. Chem., 5, 591 (1997); https://doi.org/10.1016/S0968-0896(96)00274-X.
  10. S. Kasai, H. Nagasawa, M. Yamashita, M. Masui, H. Kuwasaka, T. Oshodani, Y. Uto, T. Inomata, S. Oka, S. Inayama and H. Hori, New Antimetastatic Hypoxic Cell Radiosensitizers: Design, Synthesis, and Biological Activities of 2-Nitroimidazole-acetamide, TX-1877 and its Analogues, Bioorg. Med. Chem., 9, 453 (2001); https://doi.org/10.1016/S0968-0896(00)00265-0.
  11. P.B. Petray, M.J. Morilla, R.S. Corral and E.L. Romero, in vitro Activity of Etanidazole Against the Protozoan Parasite Trypanosoma cruzi, Mem. Inst. Oswaldo Cruz, 99, 233 (2004); https://doi.org/10.1590/S0074-02762004000200021.
  12. S.P. Gupta, QSAR and Molecular modelling, Anamaya Publishers: Delhi, India (2011).
  13. Torsion Angles and Ramachandran Plot; http://proteinstructures.com/structure/structure/Ramachandran-plot.html (Accessed on 15-10-2018).
  14. M. Hay, D.W. Thomas, J.L. Craighead, C. Economides and J. Rosenthal, Clinical Development Success Rates for Investigational Drugs, Nat. Biotechnol., 32, 40 (2014); https://doi.org/10.1038/nbt.2786.